ACL Anthology是计算语言学和自然语言处理(NLP)领域最全面、最权威的开放获取数字图书馆。它由计算语言学协会(Association for Computational Linguistics, ACL)维护,收录了该领域自1965年以来的主要会议和期刊论文,是研究人员、学生和从业者不可或缺的学术资源。
ACL Anthology的主要特点包括:
目前,ACL Anthology收录了超过70,000篇论文,涵盖了ACL、EMNLP、NAACL、EACL等主要会议以及《计算语言学》等重要期刊。它已经成为该领域最重要的学术资源库之一,对推动计算语言学和NLP的发展起到了至关重要的作用。
ACL Anthology的历史可以追溯到20世纪60年代。1962年,计算语言学协会(ACL)的前身——机器翻译和计算语言学协会(AMTCL)成立。1965年,AMTCL开始出版《机器翻译和计算语言学》杂志,这可以视为ACL Anthology的雏形。
1968年,AMTCL更名为ACL,并开始举办年度会议。随着计算语言学研究的发展,ACL开始系统性地整理和收集该领域的学术论文。1974年,ACL创办了《美国计算语言学杂志》,这是ACL Anthology的重要组成部分。
1979年,ACL开始出版年会论文集,并逐步扩大收录范围。进入21世纪后,随着互联网的普及,ACL Anthology开始向数字化、网络化方向发展。2002年,ACL Anthology正式上线,成为一个公开的在线数字图书馆。
2008年,ACL Anthology Reference Corpus (ARC)项目启动,旨在将ACL Anthology的内容标准化,便于计算语言学研究。这标志着ACL Anthology从单纯的文献库向结构化数据库转变。
近年来,ACL Anthology持续完善其功能和内容。2018年,ACL Anthology进行了重大改版,优化了用户界面和搜索功能。2020年,ACL Anthology开始提供API接口,方便开发者和研究人员进行二次开发。
ACL Anthology收录了计算语言学和NLP领域几乎所有重要的学术会议和期刊,主要包括:
此外,ACL Anthology还收录了一些相关领域的会议论文,如AAAI、IJCAI等人工智能领域的顶级会议中与NLP相关的论文。
ACL Anthology提供了丰富的功能,方便用户检索和使用文献:
搜索功能:支持按标题、作者、年份、会议等多种方式搜索论文。
浏览功能:可按年份、会议/期刊、主题等方式浏览论文。
论文详情页:提供论文PDF下载、BibTeX引用、摘要等信息。
作者页面:汇总特定作者发表的所有论文。
会议/期刊主页:集中展示特定会议或期刊的所有论文。
数据下载:提供整个数据库的元数据下载。
API接口:支持通过API检索和获取论文信息。
用户可以通过以下方式使用ACL Anthology:
直接访问ACL Anthology官网进行在线检索和浏览。
使用Python包acl-anthology
进行编程访问:
from acl_anthology import Anthology anthology = Anthology() paper = anthology.get('P19-1032') print(paper.title) print(paper.author) print(paper.pdf_url)
git clone https://github.com/acl-org/acl-anthology.git cd acl-anthology make
GET https://api.aclanthology.org/v1/papers/P19-1032
ACL Anthology采用了现代的网站架构和技术栈,主要包括:
前端:使用Hugo静态网站生成器,采用响应式设计,支持移动端访问。
后端:使用Python处理数据,生成静态页面。
数据存储:所有元数据以YAML格式存储,便于版本控制和协作编辑。
搜索:使用Elasticsearch实现全文搜索功能。
API:基于FastAPI框架实现RESTful API。
托管:网站托管在GitHub Pages上,实现了自动化部署。
PDF存储:论文PDF文件存储在Amazon S3上。
整个系统的源代码托管在GitHub上,采用开源的方式进行开发。这种开放、透明的开发模式有利于社区贡献,不断完善ACL Anthology的功能。
作为计算语言学和NLP领域最重要的开放获取数字图书馆,ACL Anthology对该学科的发展做出了巨大贡献:
促进知识传播:为研究人员提供了便捷的文献获取渠道,加速了知识的传播和交流。
推动开放获取:ACL Anthology的成功为学术界推广开放获取模式提供了范例。
支持元研究:ACL Anthology的数据为分析计算语言学领域的发展趋势提供了基础。
保存学科历史:系统性地保存了该领域50多年的研究成果,对学科史研究具有重要价值。
培养人才:为学生和初学者提 供了学习NLP的优质资源。
推动技术创新:ACL Anthology的数据被广泛用于开发新的NLP模型和工具。
展望未来,ACL Anthology仍有很大的发展空间:
扩大收录范围:进一步拓展收录的会议和期刊范围,覆盖更多相关领域。
增强语义检索:引入更先进的NLP技术,提供更智能的搜索体验。
加强数据分析:开发更多数据分析工具,深入挖掘学术发展规律。
改进用户界面:进一步优化网站设计,提升用户体验。
拓展多语言支持:增加对非英语论文的收录和检索支持。
加强社区互动:引入更多社交化功能,促进研究人员之间的交流。
总的来说,ACL Anthology作为计算语言学和NLP领域的核心学术资源,将继续在推动学科发展、促进学术交流等方面发挥重要作用。它的不断完善和创新,将为计算语言学的未来发展提供坚实的基础。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统 操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号