近年来,随着人工智能、计算机图形学等技术的飞速发展,数字人(Digital Human)技术取得了巨大的进步,成为学术界和产业界关注的热点。数字人是指通过计算机技术生成的具有人类外观和行为特征的虚拟角色。它不仅能够逼真地模拟人类的外表,还能实现自然的动作、表情和交互。
数字人技术的发展经历了从简单到复杂、从静态到动态的过程。早期的数字人主要是静态的3D模型,后来逐步实现了动画和表情。近年来,随着深度学习等AI技术的应用,数字人的生成和控制变得更加智能和自然。目前,数字人技术已经在游戏、影视、虚拟主播等领域得到了广泛应用,并且正在向元宇宙等新兴领域拓展。
本文将从3D人体建模、头像生成、动作生成等方面,全面介绍数字人技术的最新研究进展,并探讨其在各个领域的应用前景。
3D人体建模是数字人技术的基础。近年来,基于深度学习的3D人体建模方法取得了突破性进展,能够从2D图像或视频重建出高质量的3D人体模型。
从单张或少量2D图像重建3D人体模型是一个具有挑战性的问题。最近的一些研究提出了创新的解决方案:
RODIN模型提出了一种基于扩散模型的3D数字人头像生成方法。该方法可以根据文本描述生成高质量的3D头像,并支持姿态和形状的精细控制。
StyleAvatar3D利用图像-文本扩散模型来生成高保真的3D头像。该方法首先生成多视角的头像图像,然后通过3D重建获得完整的3D模型 。
AvatarCraft提出了一种基于文本的3D人体头像生成和编辑方法。该方法可以根据文本描述生成多样化的3D头像,并支持形状和姿态的精确控制。
这些方法极大地简化了3D人体建模的过程,使得普通用户也能轻松创建个性化的3D头像。
从视频序列重建动态3D人体模型是另一个重要的研究方向。最近的一些工作包括:
PointAvatar提出了一种基于可变形点云的头部头像生成方法。该方法可以从单个视频中学习出高质量的动态3D头像模型。
RAM-Avatar实现了从单目视频重建全身可控的实时照片级头像。该方法可以生成高保真的3D人体模型,并支持实时动画和渲染。
PersonNeRF提出了一种从个人照片集合重建3D人体模型的方法。该方法可以生成高质量的可动画3D人体模型,并支持新视角的渲染。
这些方法大大提高了3D人体重建的效率和质量,为创建逼真的数字人奠定了基础。
神经辐射场(NeRF)是近年来3D重建和渲染领域的一个热点技术。一些研究将NeRF应用于人体建模:
NeRSemble提出了一种多视角人头神经辐射场重建方法。该方法可以从多视角图像中重建出高质量的3D人头模型,并支持新视角的渲染。
Next3D提出了一种生成式神经纹理光栅化方法,用于生成3D感知的头部头像。该方法可以生成高质量的3D头像模型,并支持多视角渲染和编辑。
LatentNeRF提出了一种基于潜在空间的形状引导3D生成方法。该方法可以生成高质量的3D形状和纹理,并支持灵活的编辑和控制。
这些基于NeRF的方法为3D人体建模提供了新的思路,有望进一步提高重建质量和渲染效果。
生成逼真的数字人头像是数字人技术的一个重要研究方向。近年来,得益于生成对抗网络(GAN)和扩散模型等生成技术的进步,数字人头像生成取得了显著进展。
GAN是一种强大的生成模型,被广泛应用于图像生成任务。在数字人头像生成方面,一些基于GAN的方法取得了不错的效果:
StyleGAN系列模型在高质量人脸图像生成方面表现出色。最新的StyleGAN3进一步提高了生成图像的质量和多样性。
PIRenderer提出了一种可控的3D感知头像生成方法。该方法可以根据3D先验生成高质量的头像图像,并支持姿态和表情的精确控制。
GANHead提出了一种生成式可动画神经头部头像方法。该方法可以生成高质量的3D头部模型,并支持表情和姿态的灵活控制。
这些基于GAN的方法在生成高质量、可控的数字人头像方面取得了显著进展。
扩散模型是近期兴起的一种强大的生成模型,在图像生成任务上展现出了优异的性能。一些研究将扩散模型应用于数字人头像生成:
DreamFace提出了一种基于文本引导的3D人脸渐进生成方法。该方法可以根据文本描述生成高质量的3D人脸模型,并支持动画控制。
HeadArtist提出了一种基于文本条件的3D头部生成方法。该方法利用自蒸馏技术提高了生成质量,可以生成多样化的高质量3D头部模型。
HumanGaussian提出了一种基于高斯溅射的文本驱动3D人体生成方法。该方法可以根据文本描述生成高质量的3D人体模型,并支持灵活的编辑和控制。
这些基于扩散模型的方法为数字人头像 生成提供了新的可能,有望进一步提高生成质量和多样性。
让数字人做出自然、逼真的动作是实现交互式数字人的关键。近年来,基于深度学习的人体动作生成技术取得了重要进展。
基于骨骼的方法是动作生成的主流方法之一。一些最新的研究包括:
CLIP-Actor提出了一种基于文本驱动的人体网格动画和风格化方法。该方法可以根据文本描述生成多样化的人体动作,并支持风格迁移。
AvatarCLIP实现了基于文本的3D头像生成和动画。该方法可以根据文本描述生成3D头像并控制其动作,支持零样本生成。
DELIFFAS提出了一种可变形光场方法,用于快速头像合成。该方法可以实现高质量的3D头像动画,并支持实时渲染。
这些方法极大地提高了动作生成的质量和多样性,为创建可交互的数字人奠定了基础。
近年来,一些研究尝试直接利用神经网络生成人体动作,取得了不错的效果:
PEGASUS提出了一种个性化生成式3D头像方法,支持可组合属性。该方法可以生成具有个性化特征的3D头像,并支持灵活的属性编辑。
GauHuman提出了一种基于高斯溅射的单目人体视频重建方法。该方法可以从单目视频重建出高质量的可动画3D人体模型。
Drivable 3D Gaussian Avatars提出了一种可驱动的3D高斯头像方法。该方法可以生成高质量的3D头像模型,并支持灵活的表情和姿态控制。
这些基于神经网络的方法为动作生成提供了新的思路,有望进一步提高生成质量和自然度。
数字人技术正在各个领域展现出巨大的应用潜力,为产业发展和用户体验带来新的可能。
在游戏和影视制作中,数字人技术可以大大提高角色创作的效率和质量:
数字人在直播和虚拟主播领域也有广阔的应用前景:
在新兴的元宇宙领域,数字人技术将发挥关键作用:
数字人技术在教育培训领域也有重要应用:
在商业领域,数字人可以提供全天候的智能客服:
尽管数字人技术取得了巨大进展,但仍然面临一些重要挑战:
数字人技术正处于蓬勃发展的阶段,其应用前景广阔。随着人工智能、计算机图形学等技术的进步,数字人将变得越来越智能、逼真和自然。在不久的将来,数字人有望成为连接现实世界和虚拟世界的重要桥梁,为人类社会带来深远的影响。
然而,发展数字人技术的同时,我们也要注意其中的伦理和隐私问题,确保这项技术能够造福人类,而不是带来负面影响。相信在学术界和产业界的共同努力下,数字人技术将继续突破创新,为人类社会的发展做出重要
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布 式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域 。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富 的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号