在人工智能快速发展的今天,大语言模型(LLMs)已经在各种任务中展现出卓越的性能,推动着自然语言处理领域不断前进。然而,当涉及到在现实世界中处理复杂任务时,开源的大语言模型仍然远远落后于ChatGPT和GPT-4等商业模型。这些代理任务需要语言模型作为中央控制器,负责规划、记忆和工具使用,不仅需要精细的提示方法,还需要强大的语言模型才能取得令人满意的表现。
虽然已有许多针对特定代理任务的提示方法被提出,但很少有研究专注于提高语言模型本身的代理能力,同时又不影响其通用能力。为了解决这一问题,来自清华大学和智谱AI的研究团队提出了一种名为AgentTuning的创新方法,旨在增强大语言模型的代理能力,同时保持其通用语言能力。
AgentTuning是一种简单而通用的方法,通过构建高质量的交互轨迹数据集AgentInstruct,并结合开源的通用领域指令,采用混合指令微调策略来增强大语言模型的代理能力。这种方法不仅提高了模型在代理任务中的表现,还保持了模型在一般语言任务中的优秀表现。
上图展示了AgentTuning的整体流程,包括AgentInstruct数据集的构建、轨迹交互和轨迹筛选。AgentLM模型通过混合AgentInstruct和通用领域指令进行微调而得到。
AgentInstruct是AgentTuning方法的核心组成部分,它是一个精心策划的数据集,包含1,866个高质量交互,涵盖6个不同的现实世界任务。该数据集具有以下特点:
链式思考(CoT): 利用ReAct技术,为每个动作提供详细的思考解释,确保模型决策过程的透明度。
多样性: 涵盖从日常家务到数据库操作等6个真实场景,平均交互轮数从5到35不等。
精确性: 并非所有GPT-4的轨迹都是有效的。AgentInstruct经过严格的奖励过滤,以确保最高质量。
质量保证: 进行严格的检查以避免数据泄露,确保数据集的纯净度。
基于AgentTuning方法,研究团队对Llama 2系列模型进行了指令微调,得到了名为AgentLM的模型。AgentLM模型采用混合训练策略,结合了AgentInstruct数据集和ShareGPT数据集。目前,研究团队已经开源了AgentLM-7B、AgentLM-13B和AgentLM-70B三个版本的模型,为开源社区提供了强大的AI代理替代方案。
研究团队对AgentLM进行了全面的评估,结果表明AgentTuning显著提升了模型的代理能力,同时保持了其在一般语言任务中的优秀表现。
上图展示了AgentLM在保持原有场景和新场景任务中的总体得分。可以看出,AgentLM-70B在未见过的代理任务中的表现可以与GPT-3.5-turbo相媲美,展现出了强大的泛化能力。
具体来说,评估包括了6个保持原有任务和6个新场景任务:
保持原有任务:
新场景任务:
在这些任务中,AgentLM展现出了显著的性能提升,特别是在新场景任务中,AgentLM-70B的表现甚至超过了GPT-3.5-turbo,展现出了强大的泛化能力。
为了更好地理解AgentLM的性能,研究团队对三个保持原有任务(ALFWorld、WebShop和Knowledge Graph)进行了详细的错误分析。结果显示,原始的Llama2模型在重复生成和执行无效动作等基本错误上表现较差,而AgentLM显著减少了这些基本错误。
研究团队推测,虽然Llama 2本身具有代理能力,但由于缺乏对代理数据的对齐训练,导致其表现不佳。AgentTuning有效地激活了模型的代理潜力,使其在复杂任务中表现出色。
为了更直观地展示AgentLM的优势,研究团队提供了两个具体案例,分别来自ALFWorld和Knowledge Graph任务:
ALFWorld任务中,Llama-2-70b-chat重复相同的动作最终导致任务失败,而AgentLM-70B在失败后能够调整行动策略。
Knowledge Graph任务中,面对错误时Llama-2-70b-chat拒绝修复函数调用,而是要求用户实现函数。相比之下,AgentLM-70B提供了正确的函数调用。
这些案例清楚地展示了AgentLM在处理复杂任务时的灵活性和适应性,凸显了AgentTuning方法的有效性。
AgentTuning为增强大语言模型的代理能力提供了一种简单而有效的方法。通过构建高质量的AgentInstruct数据集和采用混合指令微调策略,AgentLM在各种复杂的代理任务中展现出了卓越的性能,同时保持了其在一般语言任务中的优秀表现。
这项研究不仅为开源社区提供了强大的AI代理替代方案,也为未来大语言模型在实际应用中的发展指明了方向。随着AgentTuning技术的不断完善和应用,我们可以期待看到更多智能、灵活的AI代理系统在各个领域发挥作用,推动人工智能技术向着更加实用和普及的方向发展。
作为开源项目,AgentTuning的代码、数据集和预训练模型都已在GitHub上公开。研究团队鼓励更多的研究者和开发者参与到这个项目中来,共同推动大语言模型代理能力的进步。未来,我们可能会看到更多基于AgentTuning的应用场景,如智能家居助手、复杂任务规划系统等,这将为人类的日常生活和工作带来更多便利和效率提升。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号