AnglE 学习资料汇总 - 强大的句子嵌入训练和推理框架

Ray

AnglE

AnglE简介

AnglE是一个用于训练和推理强大句子嵌入的开源框架。它源自论文《AnglE: Angle-optimized Text Embeddings》,允许用户通过几行代码就能训练出最先进的基于BERT或LLM的句子嵌入。AnglE还是一个通用的句子嵌入推理框架,可以推理各种基于transformer的句子嵌入。

AnglE Logo

主要特性

AnglE具有以下主要特性:

  • 支持多种损失函数:AnglE损失、对比损失、CoSENT损失等
  • 支持多种主干网络:基于BERT的模型、基于LLM的模型等
  • 支持单GPU和多GPU训练
  • 提供了预训练模型
  • 易于使用的API

安装

使用pip安装AnglE:

python -m pip install -U angle_emb

快速使用

推理BERT模型

from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()

doc_vecs = angle.encode([
    'The weather is great!',
    'The weather is very good!',
    'i am going to bed'
])

for i, dv1 in enumerate(doc_vecs):
    for dv2 in doc_vecs[i+1:]:
        print(cosine_similarity(dv1, dv2))

推理LLM模型

import torch
from angle_emb import AnglE, Prompts
from angle_emb.utils import cosine_similarity

angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf',
                              pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2',
                              pooling_strategy='last',
                              is_llm=True,
                              torch_dtype=torch.float16).cuda()

doc_vecs = angle.encode([
    {'text': 'The weather is great!'},
    {'text': 'The weather is very good!'},
    {'text': 'i am going to bed'}
], prompt=Prompts.A)

for i, dv1 in enumerate(doc_vecs):
    for dv2 in doc_vecs[i+1:]:
        print(cosine_similarity(dv1, dv2))

训练自定义模型

AnglE提供了便捷的API用于训练自定义模型:

from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer

angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()

ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])

train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)

angle.fit(
    train_ds=train_ds,
    valid_ds=valid_ds,
    output_dir='ckpts/sts-b',
    batch_size=32,
    epochs=5,
    learning_rate=2e-5,
    save_steps=100,
    eval_steps=1000,
    warmup_steps=0,
    gradient_accumulation_steps=1,
    loss_kwargs={
        'cosine_w': 1.0,
        'ibn_w': 20.0,
        'angle_w': 1.0,
        'cosine_tau': 20,
        'ibn_tau': 20,
        'angle_tau': 20
    },
    fp16=True,
    logging_steps=100
)

学习资源

  1. 官方文档 - 详细的使用说明和API文档
  2. GitHub仓库 - 源代码和更多示例
  3. Hugging Face模型库 - 预训练模型
  4. 论文 - 技术细节和原理

AnglE架构

总结

AnglE是一个强大而灵活的句子嵌入框架,适用于各种NLP任务。通过本文介绍的学习资源,读者可以快速上手AnglE,并将其应用到自己的项目中。无论是使用预训练模型还是训练自定义模型,AnglE都提供了简单易用的API。希望这些资源能帮助你充分利用AnglE的功能,提升NLP任务的性能。

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号