大型语言模型在信息抽取中的应用与进展

Ray

引言

近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理领域取得了巨大的突破,在多种任务中展现出强大的性能。作为自然语言处理的重要分支,信息抽取(Information Extraction, IE)也受益于大型语言模型的发展,出现了许多创新性的研究工作。本文将全面介绍大型语言模型在信息抽取领域的最新应用和研究进展,重点关注命名实体识别、关系抽取和事件抽取等核心任务。

大型语言模型在命名实体识别中的应用

命名实体识别(Named Entity Recognition, NER)是信息抽取的基础任务,旨在从非结构化文本中识别和分类命名实体。随着大型语言模型的出现,NER任务迎来了新的发展机遇。

生成式方法

传统的NER方法通常采用序列标注的方式,而大型语言模型为NER任务带来了新的范式——生成式方法。例如,BART-based NER[1]和Template-based NER[2]等工作将NER任务转化为文本生成任务,直接输出实体及其类型。这种方法充分利用了预训练语言模型的生成能力,在多个数据集上取得了competitive的效果。

少样本学习

大型语言模型在少样本学习方面表现出色,为低资源场景下的NER任务提供了新的解决方案。GPT-NER[3]探索了使用GPT模型进行少样本NER的方法,通过精心设计的prompt可以在只有少量标注数据的情况下取得不错的效果。LightNER[4]提出了一种轻量级的微调范式,通过可插拔的prompting方法实现了低资源NER的有效学习。

领域适应

大型语言模型的迁移学习能力使得NER任务的领域适应变得更加容易。例如,Clinical-LLM-NER[5]探索了使用大型语言模型进行临床领域NER的方法,通过prompt工程有效提升了模型在特定领域的性能。UniversalNER[6]则提出了一种通用的NER方法,通过从大型语言模型中蒸馏知识,实现了对开放领域命名实体的识别。

NER示例图

大型语言模型在关系抽取中的应用

关系抽取(Relation Extraction, RE)旨在识别文本中实体之间的语义关系,是构建知识图谱的重要环节。大型语言模型为RE任务带来了新的思路和方法。

生成式关系抽取

与NER类似,大型语言模型也推动了生成式关系抽取方法的发展。REBEL[7]提出了一种基于端到端语言生成的关系抽取方法,直接生成包含实体和关系的结构化输出。这种方法避免了传统pipeline方法的错误传播问题,取得了很好的效果。

少样本关系抽取

大型语言模型在少样本关系抽取任务中展现出了强大的潜力。GPT-RE[8]探索了使用GPT模型进行上下文学习(in-context learning)的关系抽取方法,通过设计合适的prompt模板,在少量样本的情况下也能取得不错的效果。QA4RE[9]则提出将关系抽取任务转化为问答任务,通过对齐指令任务来解锁大型语言模型的零样本关系抽取能力。

文档级关系抽取

大型语言模型的长文本理解能力为文档级关系抽取提供了新的可能性。DORE[10]提出了一种基于生成式框架的文档有序关系抽取方法,能够有效捕获文档中的长距离依赖关系。AutoRE[11]则探索了使用大型语言模型进行文档级关系抽取的自动化方法,减少了人工设计的工作量。

大型语言模型在事件抽取中的应用

事件抽取(Event Extraction, EE)是信息抽取中最具挑战性的任务之一,包括事件检测和事件论元抽取两个子任务。大型语言模型为事件抽取任务带来了新的突破。

生成式事件抽取

生成式方法在事件抽取任务中展现出了强大的潜力。Text2Event[12]提出了一种端到端的事件抽取方法,将事件抽取建模为可控的序列到结构生成任务。DEGREE[13]则提出了一种数据高效的生成式事件抽取模型,通过精心设计的prompt模板实现了对事件类型和论元的联合抽取。

少样本事件抽取

大型语言模型在少样本事件抽取任务中也取得了显著进展。Code4Struct[14]提出了一种基于代码生成的少样本事件结构预测方法,通过将事件抽取任务转化为代码生成任务,有效提升了模型的泛化能力。DemoSG[15]则提出了一种基于示例增强的模式引导生成方法,在低资源场景下取得了不错的效果。

跨域事件抽取

大型语言模型的迁移学习能力为跨域事件抽取提供了新的思路。DICE[16]提出了一种数据高效的临床事件抽取方法,通过生成式模型实现了对新领域事件的有效抽取。TextEE[17]则提出了一个统一的事件抽取框架,通过重新评估和反思现有方法,为未来的研究指明了方向。

事件抽取示例图

挑战与未来方向

尽管大型语言模型在信息抽取任务中取得了显著进展,但仍然存在一些挑战和值得探索的方向:

  1. 模型可解释性:大型语言模型通常被视为"黑盒",如何提升模型在信息抽取任务中的可解释性是一个重要的研究方向。

  2. 知识整合:如何将外部知识有效地整合到大型语言模型中,以提升信息抽取的准确性和覆盖率,是一个值得探索的问题。

  3. 跨语言和跨模态:大型语言模型在跨语言和跨模态信息抽取方面还有很大的潜力待挖掘。

  4. 效率优化:如何在保证性能的同时,降低大型语言模型在信息抽取任务中的计算开销,是一个重要的实用性问题。

  5. 鲁棒性:提升大型语言模型在面对噪声数据、对抗样本等复杂场景下的鲁棒性,是未来研究的重要方向之一。

结论

大型语言模型为信息抽取任务带来了新的范式和机遇,在命名实体识别、关系抽取和事件抽取等多个子任务中都取得了显著的进展。通过生成式方法、少样本学习、领域适应等技术,大型语言模型极大地提升了信息抽取的性能和泛化能力。未来,随着模型架构的不断改进和训练数据的持续积累,大型语言模型在信息抽取领域还将发挥更大的潜力,推动自然语言处理技术的进一步发展。

参考文献

[1] Chen, W., et al. (2021). A Unified Generative Framework for Various NER Subtasks. ACL.

[2] Cui, L., et al. (2021). Template-Based Named Entity Recognition Using BART. ACL Findings.

[3] Wang, S., et al. (2023). GPT-NER: Named Entity Recognition via Large Language Models. arXiv preprint.

[4] Zhang, N., et al. (2022). LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable Prompting. COLING.

[5] Li, Y., et al. (2024). Improving Large Language Models for Clinical Named Entity Recognition via Prompt Engineering. arXiv preprint.

[6] Cao, Z., et al. (2024). UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition. ICLR.

[7] Cabot, P. L. I., & Navigli, R. (2021). REBEL: Relation Extraction By End-to-end Language generation. EMNLP Findings.

[8] Wan, Y., et al. (2023). GPT-RE: In-context Learning for Relation Extraction using Large Language Models. EMNLP.

[9] Zhong, Z., et al. (2023). Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors. ACL Findings.

[10] Su, Y., et al. (2022). DORE: Document Ordered Relation Extraction based on Generative Framework. EMNLP Findings.

[11] Li, W., et al. (2024). AutoRE: Document-Level Relation Extraction with Large Language Models. arXiv preprint.

[12] Lu, Y., et al. (2021). Text2event: Controllable sequence-to-structure generation for end-to-end event extraction. ACL.

[13] Li, X., et al. (2022). DEGREE: A Data-Efficient Generative Event Extraction Model. NAACL.

[14] Xu, X., et al. (2023). Code4Struct: Code Generation for Few-Shot Event Structure Prediction. ACL.

[15] Zhao, G., et al. (2023). DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Extraction. EMNLP Findings.

[16] Ma, D., et al. (2023). DICE: Data-Efficient Clinical Event Extraction with Generative Models. ACL.

[17] Hsu, I-H., et al. (2024). TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event Extraction. arXiv preprint.

avatar
0
0
0
相关项目
Project Cover

MythoMax-L2-13B-GGUF

MythoMax-L2-13B是一个基于Llama2的GGUF量化语言模型,提供2-8比特共13种量化版本。模型支持llama.cpp等多种终端工具,具备更强的分词能力和特殊令牌支持。模型文件大小从5.43GB到13.83GB不等,可根据设备配置选择合适版本。该模型遵循Meta Llama 2许可协议。

Project Cover

dolphin-2.0-mistral-7B-GGUF

Dolphin-2.0-mistral-7B的GGUF格式模型提供多个量化版本,从2比特到8比特不等。模型支持CPU和GPU推理,可在llama.cpp等框架上运行。采用ChatML提示模板格式,适用于文本生成和对话任务。项目提供完整使用文档,支持多种部署方式。

Project Cover

Llama3-Med42-8B

Med42-v2套件提供访问8亿或70亿参数的临床大语言模型,通过LLaMA-3开发,其在医学问答任务中的表现卓越,特别是Med42-v2-70B,在MCQA任务中超越了GPT-4.0,位居临床Elo评分榜首,并在MedQA零样本测试中取得79.10的优秀成绩。目前,该模型尚需进一步评估以确保安全,并计划应用于医疗问答、患者记录总结等领域,以增强临床决策支持。

Project Cover

laser-dolphin-mixtral-2x7b-dpo-GGUF

GGUF格式开创了一种新的模型优化方法,适用于多平台的机器学习应用,带来更优的性能与存储管理。该项目兼容多个用户界面,如llama.cpp和KoboldCpp,并支持多种量化文件格式,推荐选用Q4_K_M和Q5_K_M以实现性能与资源消耗的最佳平衡。

Project Cover

TinyTroupe

TinyTroupe是一个基于Python的实验库,使用GPT-4等大型语言模型,模拟具有个性及目标的人物在虚拟环境中的互动。通过该工具,用户可以探索广告评估、软件测试、合成数据生成,以及产品和项目管理等应用,帮助提升生产力和获取商业洞察。项目处于早期开发阶段,欢迎反馈和贡献以推动其发展。

Project Cover

HarmBench-Llama-2-13b-cls

该项目提供一款先进的文本行为分类工具,专为在HarmBench框架中使用而设计,采用Llama-2-13b模型支持标准和上下文行为识别。此工具不仅在文本中检测行为,还能全面分析其上下文。用户可通过官网获得使用指南和示例。经过与现有指标与分类器的比较,该分类器的性能显著优于大多数竞争对手,尤其在与GPT-4进行的性能对比中表现卓越。HarmBench环保倚赖自动化红队评估和分类技术,为用户提供稳定可靠的文本行为分类方案。

Project Cover

Wizard-Vicuna-13B-Uncensored-GGUF

Wizard Vicuna 13B模型的GGUF量化版本,提供2-bit至8-bit多种量化精度选项。GGUF作为llama.cpp最新支持的模型格式,可实现高效的本地部署和推理。模型支持CPU与GPU加速,采用Vicuna对话模板,适用于多种文本生成场景。

Project Cover

distilroberta-base-rejection-v1

这是一个基于DistilRoBERTa的微调模型,用于检测大型语言模型(LLM)输出中的拒绝响应。模型将输入分为正常输出和拒绝检测两类,评估准确率达98.87%。采用Apache 2.0许可证,支持Transformers和ONNX运行时,易于集成。适用于内容审核和安全防护,可识别LLM对不当内容的拒绝响应。

Project Cover

zephyr-7B-beta-GGUF

Zephyr-7B-beta是Hugging Face H4团队基于Mistral-7B-v0.1开发的开源大语言模型。通过UltraChat和UltraFeedback数据集微调,该模型在对话场景中表现出色。采用MIT许可证发布,支持英语并可用于多种推理任务。开发者可使用提供的prompt模板与模型交互,探索其对话生成能力。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号