在人工智能和机器人领域,如何让机器从观察中学习行动一直是一个充满挑战的研究方向。近期,来自麻省理工学院(MIT)的研究团队提出了一种创新的方法 - AVDC(Actionless Videos through Dense Correspondences),实现了从无动作视频中学习行动的突破。这项研究不仅推动了机器学习的边界,也为机器人技术的发展带来了新的可能性。
AVDC的核心思想是通过建立视频帧之间的密集对应关系,从而理解和学习视频中的动作信息。与传统方法不同,AVDC不需要明确的动作标注,而是能够从普通的观察视频中提取出有用的动作知识。这种方法大大扩展了可用于训练的数据范围,因为绝大多数现有的视频都是没有动作标注的。
研究团队的成员包括Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun和Joshua B. Tenenbaum等人。他们的研究论文《Learning to Act from Actionless Videos through Dense Correspondences》已发表在arXiv上,引起了学术界的广泛关注。
AVDC的实现主要基于以下几个关键技术:
密集对应关系提取: 利用先进的计算机视觉算法,AVDC能够在视频的连续帧之间建立像素级的密集对应关系。这些对应关系包含了物体移动和场景变化的丰富信息。
时空一致性建模: 通过分析多个视频帧之间的对应关系,AVDC构建了一个时空一致的场景理解模型,能够捕捉到物体运动的连贯性和因果关系。
隐式动作表示学习: AVDC不直接学习显式的动作标签,而 是学习一种隐式的动作表示。这种表示能够捕捉到动作的本质特征,而不受具体动作形式的限制。
跨域迁移: AVDC的一个重要特性是能够将从一个领域学到的知识迁移到另一个相关但不完全相同的领域。这大大增强了模型的泛化能力。
研究团队在多个领域进行了实验,以验证AVDC的有效性:
Meta-World实验: 在这个机器人操作仿真环境中,AVDC展示了出色的任务学习能力,能够从观察视频中学习并完成各种操作任务。
iTHOR实验: 在这个室内场景互动环境中,AVDC成功地学习了诸如开门、移动物体等复杂交互任务。
桥接实验: 这个实验展示了AVDC在跨域学习方面的潜力,模型能够将在一个领域学到的知识应用到另一个相关但不完全相同的领域。
这些实验结果证明,AVDC不仅能在特定任务上取得良好表现,还具有强大的泛化能力和跨域迁移能力。
AVDC项目的代码已在GitHub上开源,研究者和开发者可以通过以下步骤开始使用AVDC:
创建conda环境并安装依赖:
conda create -n avdc python=3.9
conda activate avdc
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
克隆代码仓库并安装要求:
git clone https://github.com/flow-diffusion/AVDC
cd AVDC
pip install -r requirements.txt
训练模型:
cd flowdiffusion
python train_mw.py --mode train
推理:
python train_mw.py --mode inference -c 1 -p ../examples/assembly.png -t assembly -g 2 -n 20
此外,研究团队还提供了预训练模型,包括Meta-World、iTHOR和Bridge等环境的模型检查点,方便研究者快速开始实验。
AVDC的提出为机器学习和机器人技术带来了多方面的影响:
扩展了学习数据源: 通过利用无标注的视频数据,AVDC大大扩展了可用于训练的数据范围,这对于数据驱动的AI技术具有重要意义。
促进了跨域学习: AVDC展示的跨域迁移能力,为解决机器学习中的域适应问题提供了新的思路。
推动了机器人学习: AVDC为机器人从观察中学习复杂任务提供了新的方法,这可能会加速机器人在复杂环境中的应用。
启发了新的研究方向: AVDC的成功可能会激发更多关于无监督学习、视频理解和动作生成的研究。
尽管AVDC取得了令人瞩目的成果,但仍有许多值得探索的方向:
提高模型效率: 目前AVDC的计算需求较高,未来可以探索如何优化算法,提高训练和推理的效率。
扩展到更复杂的场景: 测试AVDC在更加复杂和动态的环境中的表现,如多智能体交互场景。
结合其他学习范式: 探索将AVDC与强化学习、元学习等其他学习方法结合,以进一步提升模型性能。
实际机器人应用: 将AVDC应用到实际的机器人系统中,研究如何克服现实世界中的各种挑战。
AVDC的出现无疑为人工智能和机器人学习领域带来了新的可能性。随着技术的不断发展和完善,我们有理由相信,像AVDC这样的创新方法将会推动机器智能向着更高层次 迈进,为未来的智能系统开辟新的道路。
研究者们正在积极推进AVDC的发展,最近还发布了用于Meta-World和iTHOR实验的新代码库。随着社区的参与和贡献,AVDC有望在更广泛的领域发挥作用,为人工智能的进步做出重要贡献。
总的来说,AVDC代表了机器学习领域的一个重要突破,它展示了从无标注数据中提取有用知识的强大能力。这种方法不仅在学术界引起了广泛关注,也有望在实际应用中产生深远影响。随着技术的不断演进,我们期待看到AVDC在推动人工智能和机器人技术发展方面发挥更大的作用。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视 觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号