Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising: 一份工业界搜索、推荐和广告领域深度学习论文精选

Ray

Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising

Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising: 工业界搜索推荐广告深度学习论文精选

在当今数字化时代,搜索引擎、推荐系统和在线广告已经成为互联网公司的核心业务。这些领域正在经历深度学习技术带来的巨大变革,各大科技公司都在积极探索如何应用最新的深度学习算法来提升系统性能。本文整理了一份工业界搜索、推荐和广告领域的深度学习论文精选,涵盖了嵌入、匹配、排序、后排序、多任务学习、图神经网络、迁移学习、强化学习、自监督学习等多个方向的前沿研究成果。

嵌入技术

嵌入(Embedding)是深度学习在搜索推荐广告领域应用的基础。通过将高维离散特征映射到低维稠密向量空间,嵌入技术可以有效捕捉特征之间的语义关系,为后续的匹配和排序任务奠定基础。

在词嵌入方面,Google 2013年提出的 Word2Vec 模型开创性地将词表示为低维向量。之后 LINE、Node2Vec 等算法将嵌入技术推广到网络结构数据。2017年提出的图卷积网络(GCN)进一步将卷积神经网络引入图结构数据的嵌入学习中。

在工业界实践方面,Airbnb、阿里巴巴、Pinterest 等公司都发表了在大规模推荐系统中应用嵌入技术的实践经验。例如,阿里巴巴在 KDD 2018 发表的论文介绍了如何学习十亿规模商品的嵌入表示。Pinterest 提出的 PinSage 算法则是图卷积网络在大规模推荐系统中的成功应用。

Airbnb Embedding

匹配技术

在搜索和推荐系统的召回阶段,需要从海量候选集中快速检索出最相关的少量候选。匹配(Matching)技术正是为解决这一大规模检索问题而设计的。

微软 2013 年提出的 DSSM(Deep Structured Semantic Model)模型是深度学习用于文本匹配的开山之作。该模型使用多层神经网络学习查询和文档的语义表示,通过余弦相似度计算相关性得分。

在推荐系统领域,YouTube 2016 年发表的深度神经网络推荐模型具有里程碑意义。该模型采用双塔结构,分别学习用户兴趣和视频内容的嵌入表示,通过内积计算相关性得分。这种结构简单高效,非常适合大规模推荐系统的在线服务。

阿里巴巴在 2018-2019 年连续发表了多篇匹配模型相关论文,包括树形深度模型 TDM、序列化深度匹配模型 SDM、多兴趣网络 MIND 等。这些工作都致力于解决大规模推荐系统中的匹配问题。

YouTube DNN

排序技术

排序(Ranking)是搜索推荐广告系统的核心环节,直接决定了最终的展示结果。深度学习的引入极大地提升了排序模型的表达能力和预测精度。

在点击率(CTR)预估方面,Google 2016 年提出的 Wide&Deep 模型开创性地结合了记忆能力和泛化能力。随后华为提出的 DeepFM 模型进一步简化了模型结构,在工业界得到了广泛应用。阿里巴巴提出的 DIN、DIEN 等模型则重点解决了用户兴趣多样性的建模问题。

在转化率(CVR)预估方面,阿里巴巴提出的 ESMM 模型通过引入样本空间映射的思想,有效解决了传统 CVR 模型面临的样本选择偏差和稀疏性问题。

多任务学习也是排序模型的一个重要发展方向。Google 提出的 MMoE、PLE 等模型可以有效地建模多个相关任务,提升整体预测精度。

Wide&Deep

后排序技术

后排序(Post-ranking)是排序阶段的最后一步,通过重排少量候选集来进一步优化整体效果。这个阶段可以采用更复杂的模型和特征,充分利用上下文信息。

阿里巴巴在 2020 年提出的 COLD 模型通过引入对比学习,有效地建模了候选集内部的相对偏好关系。字节跳动提出的 DHEN 模型则通过分层编码器网络,建模了复杂的上下文依赖关系。

迁移学习

迁移学习可以有效地将知识从源域迁移到目标域,在数据稀疏的场景下具有重要意义。阿里巴巴提出的 ESAM 模型通过引入领域自适应机制,实现了跨场景的有效迁移。美团提出的 PTUPCDR 模型则致力于解决跨域推荐中的用户-物品交互稀疏性问题。

强化学习

强化学习为推荐系统引入了序列决策和长期收益最大化的思想。阿里巴巴提出的 DRN 模型将深度强化学习应用于整页推荐,有效地提升了用户长期留存。京东提出的 DeepPage 模型则通过分层强化学习来优化整页布局。

自监督学习

自监督学习可以充分利用大量无标注数据来预训练模型,在下游任务上取得更好的效果。阿里巴巴提出的 STAN 模型通过时空辅助任务来增强序列推荐模型的表达能力。美团提出的 S3-Rec 模型则设计了多个自监督任务来预训练序列推荐模型。

结语

深度学习正在深刻地改变着搜索推荐广告领域的技术格局。本文梳理的这些论文代表了工业界在这一领域的最新探索。我们可以看到,各大科技公司都在积极将深度学习的最新进展应用到实际业务中,并基于海量数据和复杂场景提出了许多创新性的解决方案。

未来,随着预训练模型、图神经网络、强化学习等新兴技术的进一步发展,搜索推荐广告系统必将迎来新一轮的革新。我们期待看到更多激动人心的研究成果,推动这一领域不断向前发展。

avatar
0
0
0
相关项目
Project Cover

fastbook

本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。

Project Cover

pytorch-handbook

本开源书籍为使用PyTorch进行深度学习开发的用户提供系统化的入门指南。教程内容覆盖了从环境搭建到高级应用的各个方面,包括PyTorch基础、深度学习数学原理、神经网络、卷积神经网络、循环神经网络等,还包含实践案例与多GPU并行训练技巧。书籍持续更新,与PyTorch版本同步,适合所有深度学习研究者。

Project Cover

cheatsheets-ai

提供详尽的深度学习和机器学习速查表,包括Tensorflow、Keras、Numpy等热门工具,帮助工程师和研究人员快速掌握核心知识,提高工作效率。访问AI Cheatsheets获取更多资源和最新技术信息,适用于各水平从业者。

Project Cover

leedl-tutorial

李宏毅教授的深度学习教程,基于《机器学习》(2021年春)并进行了优化,涵盖卷积神经网络、生成模型和自监督学习等多个领域。教程通过详细推导和重点讲解,降低了学习难度,适合中文学习者入门深度学习。

Project Cover

TensorFlow-Tutorials

这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。

Project Cover

Eva Design System

Eva Design System 运用深度学习技术自动创建配色方案,输入主色距离即可生成完整的语义化色彩。该系统有助于品牌色彩的设定及调整,优化设计师的工作流程。

Project Cover

fastai

fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。

Project Cover

d2l-en

这本开源书籍使用Jupyter笔记本无缝整合深度学习的概念、背景和代码,免费提供给所有人。书中包含可运行代码、技术深度和社区讨论,帮助读者解决实际问题并成长为应用机器学习科学家。

Project Cover

TTS

🐸TTS库提供多达16种语言的高级文本到语音转换模型,支持低于200毫秒的流媒体延迟。它包含丰富的工具用于模型训练和微调,并且拥有超过1100种预训练模型,适用于多语言和多说话人TTS任务。此外,该库还支持高效的语料库分析和管理,为语音合成提供全面支持。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号