近年来,扩散模型(Diffusion Models)和Transformer架构在人工智能领域掀起了一场革命。这两种强大的技术的结合,正在为图像、视频、3D等多模态生成AI带来前所未有的突破。本文将全面介绍Diffusion Transformers这一新兴领域的最新进展,为读者呈现一幅激动人心的AI未来图景。
扩散模型凭借其强大的生成能力,在图像生成等任务上取得了惊人的成果。而Transformer架构凭借其出色的建模长程依赖关系的能力,在自然语言处理等领域独占鳌头。将这两种技术结合,自然成为了研究人员的追求。
2022年9月,来自中国科学院的研究人员发表了论文《All are Worth Words: A ViT Backbone for Diffusion Models》,首次探索了将Vision Transformer(ViT)作为扩散模型的骨干网络。这项工作为后续的研究奠定了基础。
同年12月,Facebook AI Research团队发表了具有里程碑意义的论文《Scalable Diffusion Models with Transformers》,提出了DiT(Diffusion Transformer)架构。DiT证明了Transformer可以作为扩散模型的主干网络,在图像生成任务上取得了与CNN backbone相当的性能,同时具有更好的可扩展性。
随着研究的深入,Diffusion Transformers在各个领域都取得了突破性进展:
在图像生成领域,除 了前面提到的DiT,还出现了许多创新性的工作。例如,《Masked Diffusion Transformer is a Strong Image Synthesizer》提出了MDT(Masked Diffusion Transformer)架构,通过引入掩码机制来提高训练效率和生成质量。
《PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis》则将Diffusion Transformer应用于文本到图像的生成任务,在生成速度和质量上都取得了显著提升。
在视频生成方面,《VDT: General-purpose Video Diffusion Transformers via Mask Modeling》提出了VDT架构,通过引入时空掩码建模,实现了高质量的视频生成。
最近,OpenAI发布的Sora模型更是将视频生成推向了新的高度,能够生成长达一分钟的高质量视频。虽然OpenAI尚未公开Sora的技术细节,但业界普遍认为它很可能基于Diffusion Transformer架构。
在3D生成领域,《DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation》将Diffusion Transformer扩展到了3D领域,为3D形状生成开辟了新的可能性。
语音合成也是Diffusion Transformers的一个重要应用领域。《Diffusion Transformer for Adaptive Text-to-Speech》和《ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer》等工作都在这一领域取得了显著进展。
随着Diffusion Transformers的应用范围不断扩大,如何提高 其训练和推理效率成为了一个重要课题。
《Fast Training of Diffusion Models with Masked Transformers》提出了MaskDiT架构,通过引入极端掩码策略,大大加快了训练速度。《PIXART-δ: Fast and Controllable Image Generation with Latent Consistency Models》则探索了结合潜在一致性模型来加速生成过程。
此外,《Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion Transformers》提出了沙漏型Diffusion Transformer架构,实现了高分辨率图像的高效生成。
值得一提的是,Diffusion Transformers领域的许多重要工作都选择了开源,这极大地促进了该领域的发展。例如:
这些开源项目为研究人员和开发者提供了宝贵的资源,推动了整个领域的快速发展。
Diffusion Transformers领域正处于蓬勃发展的阶段,未来可能的发展方向包括:
多模态融合:进一步探索在单一架构中实现图像、视频、音频等多模态生成的可能性。
大规模模型:随着硬件性能的提升和训练技术的进步,可以预见未来会出现更大规模的Diffusion Transformer模型。
实时生成:优化模型结 构和推理算法,实现更快速的生成,甚至达到实时生成的水平。
controllable生成:提高对生成过程的精细控制能力,实现更加灵活和可控的生成结果。
与其他技术的结合:探索与强化学习、神经渲染等其他AI技术的结合,开拓新的应用场景。
Diffusion Transformers的出现,标志着生成式AI进入了一个新的阶段。它不仅在图像、视频、3D等多个领域带来了突破性进展,还为AI的未来发展指明了方向。随着研究的深入和技术的成熟,我们有理由相信,Diffusion Transformers将在未来的AI应用中发挥越来越重要的作用,为人类创造出更加智能、更加丰富的数字世界。
作为这一激动人心领域的见证者和参与者,我们期待看到更多令人惊叹的创新和突破。让我们共同期待Diffusion Transformers为我们带来的无限可能!
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。