在云计算领域,数据就是金矿。然而,获取真实世界的云工作负载数据往往是一个巨大的挑战。为了推动云计算技术的进步和创新,Microsoft Azure团队做出了一个重要决定:向全球研究人员开放部分Azure云平台的工作负载数据。这就是Azure公共数据集(Azure Public Dataset)项目的由来。
Azure公共数据集是Microsoft Azure云平台工作负载的代表性子集,经过脱敏处理后供研究使用。目前,该数据集主要包含三类数据:
虚拟机(VM)工作负载数据:
Azure Functions调用数据:
Azure LLM推理数据:
这些数据集涵盖了云计算的多个关键领域,为研究人员提供了宝贵的第一手资料。
Azure公共数据集的发布具有重要的学术价值和实践意义:
推动云计算研究:为研究人员提供真实的云工作负载数据,有助于开发和验证新的资源管理算法、调度策略等。
促进学术交流:统一的公开数据集为不同研究团队提供了可比较的基准,有利于学术成果的交 流与验证。
培养人才:这些数据可以用于教学,帮助学生理解真实世界的云计算挑战。
产学合作:企业可以利用这些数据进行创新,促进产学研合作。
推动开放科学:微软的这一举措体现了开放科学的精神,有利于整个领域的发展。
Azure公共数据集已经在多项重要研究中得到应用,产生了一系列高质量的学术成果:
资源管理优化:SOSP'17论文"Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms"利用2017年的VM数据,提出了改进的云资源管理方法。
无服务器计算研究:ATC'19论文"Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider"基于2019年的Azure Functions数据,对无服务器计算工作负载进行了深入分析。
VM分配策略:OSDI'20论文"Protean: VM Allocation Service at Scale"使用2020年的VM打包数据,提出了创新的VM分配服务。
无服务器缓存:SoCC'21论文"Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications"利用2020年的Blob访问数据,设计了自动扩展的无服务器缓存系统。
LLM推理优化:ISCA'24论文"Splitwise: Efficient generative LLM inference using phase splitting"基于2023年的LLM推理数据,提出了提高LLM推理效率的新方法。
这些研究成果不仅推动了学术进展,也为云计算实践提供了有价值的洞见。
研究人员可以通过以下步骤开始使用Azure公共数据集:
访问GitHub仓库:所有数据集的描述和下载链接都可以在Azure/AzurePublicDataset仓库中找到。
选择合适的数据集:根据研究需求,选择相应的数据集。每个数据集都有详细的说明文档。
下载数据:使用提供的链接下载数据文件。部分数据集可能需要使用Azure存储工具进行访问。
数据分析:仓库中提供了Jupyter notebook示例,展示了如何加载和分析数据。研究人员可以参考这些示例开始自己的分析。
引用要求:如果在研究中使用了这些数据集,请务必引用相关的论文,以支持开放数据共享。
反馈与支持:如有任何问题或建议,可以通过GitHub issues或者发送邮件到azurepublicdataset@service.microsoft.com与维护团队联系。
Azure公共数据集的发布开创了云计算领域数据共享的先河。展望未来,我们可以期待:
数据集的持续更新:随着云技术的发展,新的数据类型和工作负载模式将被纳入数据集。
更多云提供商的参与:其他大型云服务提供商可能会效仿微软,发布自己的公共数据集。
跨云比较研究:多家云提供商的数据将使跨云平台的比较研究成为可能。
AI与云融合:随着AI在云计算中的应用日益广泛,相关的数据集也将成为研究热点。
隐私保护技术的进步:更先进的数据脱敏和隐私保护技术将使得更多敏感数据可以安全地共享。
Azure公共数据集的发布是云计算开放研究的一个里程碑。它不仅为研究人员提供了宝贵的资源,也彰显了微软对推动整个行业发展的承诺。随着更多研究者利用这些数据进行创新,我们有理由相信,云计算技术将 迎来更快速、更深入的发展。无论你是学术研究者、学生还是行业实践者,Azure公共数据集都为你打开了探索云计算奥秘的大门。让我们携手利用这些数据,共同推动云计算技术的进步,为数字世界的未来贡献力量。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号