在计算机视觉和图形学领域,3D场景重建和新视角合成一直是备受关注的研究方向。然而,传统方法在处理运动模糊图像时往往面临巨大挑战。近日,来自西湖大学和浙江大学的研究团队提出了一种名为BAD-Gaussians的创新方法,为这一难题带来了突破性的解决方案。
神经渲染技术在3D场景重建和新视角合成方面展现出了令人印象深刻的能力。然而,这些方法通常依赖于高质量的清晰图像和精确的相机姿态信息。在现实世界中,由于低光照或长曝光等因素,我们经常会遇到运动模糊的图像。虽然已有多种方法尝试使用运动模糊图像训练神经辐射场(NeRF),但这些方法往往难以从严重模糊的图像中准确恢复复杂细节,且无法实现实时渲染。
BAD-Gaussians(Bundle Adjusted Deblur Gaussian Splatting)是一种新颖的方法,它巧妙地利用了显式高斯表示,并能够处理具有不准确相机姿态的严重运动模糊图像,从而实现高质量的场景重建。该方法的主要创新点包括:
联合优化:BAD-Gaussians模拟了运动模糊图像的物理形成过程,同时学习高斯参数并恢复曝光时间内的相机运动轨迹。
显式高斯表示:与隐式表示的NeRF不同,BAD-Gaussians采用显式优化点云作为高斯球体,这使得它能够更好地捕捉场景细节。
相机运动轨迹建模:通过在SE(3)空间中使用连续轨迹来模拟曝光时间内的相机运动,实现了更精确的运动估计。
立方B样条公式:相比于线性SE(3)插值,BAD-Gaussians使用四个控制节点在SE(3)空间中控制更复杂的相机轨迹,这种可微分的公式可以与3D 高斯进行联合优化。
BAD-Gaussians的实现基于nerfstudio框架,主要步骤包括:
安装:通过conda和pip安装必要的依赖,包括nerfstudio、torch等。
数据准备:支持Deblur-NeRF合成数据集、Deblur-NeRF真实数据集以及自定义数据集。
训练:针对不同类型的数据集,提供了详细的训练命令,包括线性和立方B样条相机姿态插值、虚拟相机数量调整、分辨率调度等参数设置。
视频渲染:通过ns-render命令生成轨迹,并渲染出高质量的去模糊视频。
3D高斯导出:可以将训练好的3D高斯导出为.ply文件,便于在其他查看器中可视化。
实验表明,BAD-Gaussians在合成和真实数据集上都实现了最先进的渲染质量,同时具备实时渲染能力。相比于之前的去模糊神经渲染方法,BAD-Gaussians在以下方面表现出色:
去模糊效果:能够有效地从严重模糊的图像中恢复清晰的场景细节。
新视角合成:可以生成高质量的新视角图像,展现了强大的3D场景理解能力。
相机运动恢复:准确重建了曝光时间内的相机运动轨迹。
训练速度:得益于显式高斯表示,BAD-Gaussians实现了更快的训练速度。
内存效率:相比于传统NeRF方法,BAD-Gaussians具有更低的GPU内存消耗。
实时渲染:支持实时渲染,为交互式应用提供了可能性。
BAD-Gaussians的出现为处理运动模糊图像和不准确相机姿态信息的3D场景重建开辟了新的可能性。这项技术可能在以下领域产生重要影响:
增强现实(AR):在低光环境下提供更稳定、清晰的AR体验。
虚拟现实(VR):从模糊的实时捕获图像中快速重建高质量的虚拟环境。
机器人视觉:提高机器人在快速移动或光线不足条件下的环境感知能力。
文化遗产数字化:从老旧、模糊的历史照片中重建文物或建筑的3D模型。
电影后期制作:修复运动模糊镜头,创造新的视角和特效。
尽管BAD-Gaussians已经展现出了令人印象深刻的性能,但研究团队认为仍有进一步改进的空间:
实时性能优化:进一步提高渲染速度,使其能够在更多实时应用中使用。
大规模场景处理:探索如何有效处理更大规模、更复杂的场景。
多源数据融合:研究如何将运动模糊图像与其他类型的数据(如深度信息、IMU数据等)结合,以获得更准确的重建结果。
动态场景处理:扩展当前方法以处理包含运动物体的动态场景。
迁移学习:探索如何将在一个场景上训练的模型快速适应到新的、相似的场景。
BAD-Gaussians的出现无疑为计算机视觉和图形学领域注入了新的活力。随着这项技术的不断完善和应用范围的扩大,我们可以期待在不久的将来,即使在光照条件不佳或相机快速移动的情况下,也能实现高质量、实时的3D场景重建和新视角合成。这将为增强现实、虚拟现实、机器人视觉等众多领域带来革命性的进步。
研究团队鼓励学术界和工业界的同仁们基于他们的工作进行进一步的探索和应用。通过开源代码和详细的文档,BAD-Gaussians为整个社区提供了一个强大的研究和开发平台。我们可以预见,在不久的将来,这项技术将在各种实际应用中发挥重要作用,推动计算机视觉技术向着更高精度、更强鲁棒性的方向发展。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动 化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是 一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动 化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号