BitNetMCU: 为低端微控制器打造的高精度低比特量化神经网络

Ray

BitNetMCU: 为低端微控制器打造的高精度低比特量化神经网络

BitNetMCU 是一个专注于低比特量化神经网络训练和推理的开源项目,旨在为 CH32V003 等低端微控制器提供高效的神经网络解决方案。通过量化感知训练(QAT)和精心调优的模型结构与推理代码,该项目在 16x16 MNIST 数据集上实现了超过 99% 的测试精度,同时仅使用 2KB RAM 和 16KB Flash,无需任何乘法指令。这一成果充分展示了在资源受限的微控制器上部署高精度神经网络的可能性。

项目概述

BitNetMCU 项目的核心目标是探索在低端微控制器上实现高性能神经网络的可行性。项目采用 PyTorch 构建训练流程,确保了良好的可移植性;同时,推理引擎使用 ANSI C 实现,可轻松移植到各种微控制器平台。

BitNetMCU 项目示意图

项目特性

  1. 低比特量化: 支持二值、三值、2比特、4比特和8比特等多种量化方案,适应不同的精度和资源需求。
  2. 量化感知训练: 采用量化感知训练技术,在训练过程中模拟量化效果,提高模型在低比特表示下的性能。
  3. 无乘法推理: 针对无硬件乘法器的微控制器优化,实现高效的推理过程。
  4. 灵活的训练流程: 提供可配置的训练参数,支持模型结构和训练策略的快速调整。
  5. 多平台支持: 训练部分基于 PyTorch 实现,推理引擎使用 ANSI C 编写,确保了良好的跨平台兼容性。

项目结构

BitNetMCU 项目采用模块化设计,主要包含以下组件:

BitNetMCU/
│
├── docs/                      # 项目文档
├── mcu/                       # CH32V003 微控制器相关代码
├── modeldata/                 # 预训练模型存储
│
├── BitNetMCU.py               # PyTorch 模型和 QAT 类定义
├── BitNetMCU_inference.c      # C 语言推理代码 
├── BitNetMCU_inference.h      # C 语言推理代码头文件
├── BitNetMCU_MNIST_test.c     # MNIST 数据集测试脚本
├── BitNetMCU_MNIST_test_data.h# MNIST 测试数据头文件(生成)
├── BitNetMCU_model.h          # C 语言模型数据头文件(生成)
├── exportquant.py             # 模型量化导出脚本
├── test_inference.py          # C 语言推理实现测试脚本
├── training.py                # 神经网络训练脚本
└── trainingparameters.yaml    # 训练参数配置文件

这种结构设计使得项目的各个组件职责清晰,便于开发者理解和扩展。

训练流程

BitNetMCU 项目的训练流程设计灵活,可以满足不同的实验需求:

  1. 配置: 通过修改 trainingparameters.yaml 文件设置训练超参数。
  2. 模型训练: 使用 training.py 脚本训练模型,生成的权重以 .pth 格式保存在 modeldata/ 目录下。
  3. 模型量化: 运行 exportquant.py 脚本将模型转换为量化格式,并导出为 C 语言头文件 BitNetMCU_model.h
  4. C 模型测试: 编译并执行 BitNetMCU_MNIST_test.c 进行推理测试。
  5. Python vs C 模型对比: 使用 test-inference.py 脚本对比 C 语言和 Python 模型在完整 MNIST 测试集上的性能。
  6. 微控制器测试: 按照 mcu/readme.md 中的说明在实际硬件上进行测试。

这一流程设计既方便了模型的快速迭代和优化,又确保了最终部署到微控制器上的模型性能。

技术亮点

  1. 多种量化方案:

    • 二值化(1比特)
    • 三值化(1.58比特)
    • 2比特对称量化
    • 4比特对称和非对称量化
    • FP1.3.0 量化(支持无乘法推理)
    • NormalFloat4 (NF4) 量化
  2. OCTAV 最优裁剪算法: 用于计算最优裁剪和量化参数,提高量化模型的精度。

  3. 灵活的权重缩放: 支持 PerTensor 和 PerOutput 两种权重缩放方式,适应不同的硬件特性。

  4. 数据增强: 支持旋转和仿射变换等数据增强技术,提高模型泛化能力。

  5. 动态学习率调整: 实现了 StepLR 和 CosineAnnealingLR 两种学习率调度策略。

项目进展

BitNetMCU 项目持续更新,不断引入新的特性和优化:

  • 2024年4月24日: 首次发布,支持二值、三值、2比特、4比特和8比特量化。
  • 2024年5月2日: 发布 0.1a 版本。
  • 2024年5月8日: 添加 FP1.3.0 量化,实现 98.9% 精度的无乘法推理。
  • 2024年5月11日: 修复 Linux 兼容性问题。
  • 2024年5月19日: 增加非对称4比特量化支持。
  • 2024年5月20日: 引入 quantscale 超参数,优化权重缩放。
  • 2024年5月26日: 发布 0.2a 版本。
  • 2024年7月19日: 引入 OCTAV 算法,优化裁剪和量化参数。
  • 2024年7月26日: 增加 NormalFloat4 (NF4) 量化支持。

应用前景

BitNetMCU 项目为低端微控制器上的神经网络应用开辟了新的可能性。以下是一些潜在的应用场景:

  1. 嵌入式视觉: 在资源受限的设备上实现简单的图像分类和识别任务。
  2. 智能传感器: 提升传感器数据处理能力,实现本地智能决策。
  3. 预测性维护: 在工业设备中集成简单的异常检测模型。
  4. 语音关键词识别: 实现低功耗的语音唤醒功能。
  5. 手势识别: 在可穿戴设备中实现简单的手势交互。

开发者社区

BitNetMCU 是一个开源项目,欢迎开发者参与贡献。项目在 GitHub 上获得了 221 颗星和 20 次分叉,反映了社区对该项目的兴趣。开发者可以通过以下方式参与:

  1. 提交 Issue 报告 bug 或提出新功能建议
  2. 提交 Pull Request 贡献代码
  3. 在 Discussions 中讨论技术问题和应用思路
  4. 为项目文档做出贡献,帮助新用户更好地理解和使用 BitNetMCU

未来展望

BitNetMCU 项目虽然已经取得了显著成果,但仍有很大的发展空间:

  1. 扩展模型支持: 除 MNIST 外,探索在其他数据集上的应用。
  2. 优化量化算法: 继续研究更高效的量化方法,进一步提升精度和效率的平衡。
  3. 硬件加速: 探索利用微控制器特定硬件特性进行推理加速的可能性。
  4. 端到端优化: 结合硬件特性,从模型设计到推理实现的全流程优化。
  5. 跨平台支持: 扩展到更多种类的微控制器平台。

BitNetMCU 项目展示了在资源受限环境下实现高性能神经网络的可能性,为嵌入式 AI 和边缘计算领域提供了宝贵的参考。随着项目的不断发展和社区的积极参与,我们有理由期待 BitNetMCU 在推动低端设备 AI 应用方面发挥更大的作用。

结语

BitNetMCU 项目通过创新的量化技术和优化策略,成功地在低端微控制器上实现了高精度的神经网络推理。这一成果不仅展示了嵌入式 AI 的巨大潜力,也为解决资源受限设备上的复杂问题提供了新的思路。随着物联网和边缘计算的快速发展,像 BitNetMCU 这样的项目将在推动技术创新和应用落地方面发挥越来越重要的作用。我们期待看到更多开发者和研究者加入到这一激动人心的领域,共同探索人工智能在微控制器世界中的无限可能。

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号