CogCoM是由清华大学开发的一种新型视觉语言模型(VLM),它采用了名为"链式操作"(Chain of Manipulations, CoM)的创新方法,能够逐步解决复杂的视觉问题。这个模型展现了令人印象深刻的多模态能力,能够执行各种视觉任务,如视觉推理、目标检测、图像描述等。
链式操作机制: CogCoM通过设计6种基本操作,使模型能够逐步解决复杂的视觉问题。这种方法允许模型在解决问题时提供证据和中间步骤。
多轮多图像架构: 模型采用了兼容典型VLM结构的多轮多图像模型架构,增强了处理复杂视觉场景的能力。
自动数据生成: 研究团队引入了一种级联数据生成流程,利用大型语言模型(LLM)和视觉基础模型(VFM)自动生成大量无错误的训练数据。
多样化能力: CogCoM具备聊天、图像描述、目标检测和推理等多种能力,展现了其作为通用视觉语言模型的潜力。
CogCoM目前提供了三个主要版本:
这些模型在多个基准测试中都表现出色,如GQA、TallyVQA、TextVQA和ST-VQA等。例如,在GQA测试中,CogCoM达到了71.7%的准确率,显著超过了其他知名模型。
CogCoM展示了在多种多模态场景中的灵活适应能力:
环境要求:
安装步骤:
pip install -r requirements.txt
python -m spacy download en_core_web_sm
模型下载: 可以通过Hugging Face或SAT(SwissArmyTransformer)下载模型权重。
运行demo:
如果需要在特定任务或领域上微调CogCoM,可以参考finetune.sh
和finetune.py
文件中的代码。
通用多轮对话: 可以自由输入任何内容进行对话。
链式操作推理: 通过特定的启动提示词,可以显式激活CogCoM的CoM推理机制:
Please solve the problem gradually via a chain of manipulations, where in each step you can selectively adopt one of the following manipulations GROUNDING(a phrase)->boxes, OCR(an image or a region)->texts, CROP_AND_ZOOMIN(a region on given image)->new_image, CALCULATE(a computable target)->numbers, or invent a new manipulation, if that seems helpful. {QUESTION}
视觉目标检测: CogCoM支持多种目标检测相关任务,包括:
CogCoM的代码采用Apache-2.0许可证开源,但模型权重的使用需遵守特定的模型许可。
CogCoM作为一种新型视觉语言模型,通过创新的链式操作机制,实现了复杂视觉问题的逐步解决。它在多个基准测试中的出色表现,以及在各种多模态任务中的灵活适应性,展示了其作为通用视觉语言模型的巨大潜力。未来,随着进一步的研究和优化,CogCoM有望在更广泛的应用场景中发挥重要作用,推动视觉语言处理技术的发展。
研究者和开发者可以通过GitHub仓库(https://github.com/THUDM/CogCoM)获取更多关于CogCoM的信息、代码和资源。随着人工智能和计算机视觉技术的不断进步,我们可以期待看到更多像CogCoM这样的创新模型,为多模态智能系统的发展带来新的可能性。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财 务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程 ,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可 视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快 速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号