一致性大语言模型(CLLMs):提高LLM推理效率的新方法

RayRay
CLLM大语言模型并行解码Jacobi解码生成速度Github开源项目

一致性大语言模型(CLLMs):提高LLM推理效率的新方法

在人工智能和自然语言处理领域,大语言模型(Large Language Models, LLMs)的发展日新月异。然而,随着模型规模的不断扩大,如何提高LLMs的推理效率成为了一个亟待解决的问题。近期,研究人员提出了一种新的模型家族——一致性大语言模型(Consistency Large Language Models, CLLMs),为提高LLM推理效率提供了一种创新的解决方案。

CLLMs的核心原理

CLLMs的核心思想是通过并行解码来提高推理效率。与传统的自回归(Autoregressive, AR)解码不同,CLLMs采用了一种称为Jacobi解码的方法。这种方法允许模型同时生成多个token,而不是一次只生成一个token。具体来说,CLLMs能够将任何随机初始化的n个token序列映射到与AR解码相同的结果,并且尽可能用最少的步骤完成这个过程。

CLLM logo

CLLMs的优势

与现有的快速解码技术相比,CLLMs具有以下几个显著优势:

  1. 无需草稿模型:许多快速解码方法需要使用草稿模型来生成初始序列,而CLLMs不需要这一步骤。

  2. 无需架构修改:CLLMs保持了与目标LLM相同的架构,不需要额外的模型组件。

  3. 易于集成:由于保持了相同的架构,CLLMs可以无缝地与其他LLM推理优化技术(如前瞻解码)结合使用,实现更显著的加速效果。

  4. 简化工程实现:CLLMs不需要处理获取"好"的草稿模型和管理两个不同模型的复杂性。

  5. 通用性强:CLLMs的技术可以轻松应用于不同的模型,无需额外的工程努力。

CLLMs在实际应用中的表现

研究人员在多个任务上对CLLMs进行了测试,结果表明CLLMs在生成速度上有显著提升:

  • 在各种任务中,CLLMs实现了2.4倍到3.4倍的生成速度提升。
  • 在解决基础数学问题时,CLLMs展示了约3倍的速度提升。

CLLM speedup

CLLMs的应用场景

目前,研究人员已经在多个领域训练和测试了CLLMs,包括:

  1. 通用对话:基于ShareGPT数据集训练的7B参数模型。
  2. 数学问题求解:基于GSM8K数据集训练的7B参数模型。
  3. 文本到SQL转换:基于Spider数据集训练的7B参数模型。
  4. Python代码生成:基于Code-Search-Net Python数据集训练的7B参数模型。

这些模型在各自的任务上都展现出了优秀的性能和效率提升。

CLLMs的工作原理演示

为了直观地展示CLLMs的工作原理,研究人员提供了一个解决基础数学问题的演示。在这个演示中,我们可以清晰地看到CLLMs相比于基线模型在生成速度上的显著优势。

CLLM demo

CLLMs的训练与使用

对于那些希望尝试或进一步研究CLLMs的开发者和研究人员,CLLMs的代码和预训练模型权重已经开源。训练CLLMs的过程主要包括以下步骤:

  1. 收集Jacobi轨迹:可以直接下载预处理好的数据,也可以根据自己的目标模型和数据集生成适合的轨迹。
  2. 训练CLLM:使用收集到的Jacobi轨迹来训练CLLM。

此外,研究人员还提供了详细的评估方法,包括测试生成速度和准确性的脚本。

CLLMs的未来发展

作为一种新兴的LLM推理优化技术,CLLMs展现出了巨大的潜力。随着研究的深入,我们可以期待CLLMs在以下几个方面有进一步的发展:

  1. 扩展到更大规模的模型:目前公开的CLLMs主要是7B参数规模,未来可能会看到更大规模的CLLMs。
  2. 应用于更多领域:除了已经测试的任务外,CLLMs有望在更多专业领域发挥作用。
  3. 与其他优化技术的结合:CLLMs与其他LLM推理优化技术的结合可能会带来更加显著的效率提升。
  4. 推理硬件的适配:针对CLLMs的并行解码特性,可能会出现专门优化的硬件加速方案。

结论

一致性大语言模型(CLLMs)为提高LLM推理效率提供了一种新的思路。通过创新的Jacobi解码方法,CLLMs实现了显著的速度提升,同时保持了与原始LLM相同的架构。这种方法不仅简化了工程实现,还为LLM在实际应用中的部署提供了新的可能性。随着研究的进一步深入和技术的不断完善,我们有理由相信CLLMs将在未来的AI应用中发挥越来越重要的作用。

对于对CLLMs感兴趣的读者,可以访问CLLMs的GitHub仓库获取更多技术细节和最新进展。同时,研究人员也欢迎社区贡献,共同推动这一创新技术的发展。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多