在人工智能和深度学习领域,神经网络架构的创新一直是推动技术进步的重要动力。近日,一个名为Convolutional-KANs的新型神经网络架构引起了研究界的广泛关注。这个由Antonio Tepsich等人提出的模型,巧妙地将Kolmogorov-Arnold网络(KAN)的创新理念与传统卷积神经网络(CNN)相结合,为计算机视觉任务带来了新的可能性。
Convolutional-KANs的核心思想是将KAN的创新架构扩展到CNN的卷积层中。传统的CNN使用线性卷积操作,而Convolutional-KANs则将其替换为可学习的非线性激活函数。这一改变看似简单,却带来了深远的影响。
在标准CNN中,卷积操作是通过卷积核与输入图像对应区域进行点积来实现的。而在Convolutional-KANs中,每个卷积核元素都对应一个可学习的非线性函数φ_i。卷积的结果是将这些非线性函数应用于输入后的总和,即Σφ_i(x_i)。这种设计使得模型能够捕捉更复杂的非线性特征,potentially提高了模型的表达能力。
Convolutional-KANs的一个显著特点是其参数效率。虽然每个KAN卷积层的参数数量比传统卷积层多,但整体模型所需的参数可能大大减少。例如,在实验中,KANConv & MLP模型在MNIST数据集上达到了与大型CNN相当的准确率,但参数数量却只有后者的七分之一。
这种参数效率源于KAN的数学基础。KAN基于Kolmogorov-Arnold表示定理,而CNN则基于普遍近似定理。这两种理论基础的结合,使得Convolutional-KANs能够在保持强大表达能力的同时,显著减少所需的参数数量。
研究团队在MNIST数据集上进行了初步实验,比较了不同架构的性能:
实验结果显示,KKAN模型在测试准确率上仅比中等规模的ConvNet低0.04,但参数数量几乎减半(94k vs 157k)。这一结果充分展示了Convolutional-KANs架构的潜力。
尽管Convolutional-KANs展现出了巨大的潜力,但研究团队也坦承目前仍面临一些挑战:
训练速度:当前KAN的训练速度比传统MLP慢约10倍。这被认为是一个工程问题,而非根本限制。
复杂数据集的表现:目前的实验主要集中在MNIST等相对简单的数据集上。在更复杂的数据集上的表现还有待验证。
超参数调优:模型涉及多个超参数,如何有效地调优这些参数以获得最佳性能仍是一个挑战。
理论解释:虽然实验结果令人鼓舞,但对Convolutional-KANs为何能够在某些情况下优于传统CNN的理论解释还不够充分。
为了进一步推进这项技术,研究团队计划在以下几个方面开展工作:
Convolutional-KANs项目采用开源方式开发,研究团队欢迎全球开发者和研究人员参与贡献。感兴趣的读者可以访问项目的GitHub仓库了解更多细节,并通过提交Pull Request或开Issue的方式参与到项目中来。
此外,研究团队还提供了详细的安装和使用说明,方便其他研究者快速上手:
git clone git@github.com/AntonioTepsich/ckan.git cd Convolutional-KANs pip install -r requirements.txt
使用时,只需将kan_convolutional
文件复制到你的项目中,然后通过以下方式导入:
from kan_convolutional.KANConv import KAN_Convolutional_Layer
Convolutional-KANs的出现为神经网络架构的设计带来了新的思路。虽然目前还处于早期阶段,但其展现出的参数效率和潜在的性能优势让人对其未来充满期待。随着更多研究者的加入和更多实验的开展,我们有理由相信Convolutional-KANs将在计算机视觉等领域发挥重要作用,推动人工智能技术的进一步发展。
作为一个正在快速发展的研究领域,Convolutional-KANs的每一步进展都值得我们密切关注。无论你是深度学习研究者、计算机视觉工程师,还是对AI前沿技术感兴趣的爱好者,都不妨深入了解这项创新技术,也许你的参与将成为推动Convolutional-KANs发展的关键一步。让我们共同期待这项技术在未来带来的无限可能! 🚀🧠💻
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号