参数高效迁移学习: 计算机视觉和多模态领域的前沿进展

RayRay
Parameter-Efficient Transfer LearningPromptAdapterComputer VisionMultimodalGithub开源项目

Awesome-Parameter-Efficient-Transfer-Learning

参数高效迁移学习: 计算机视觉和多模态领域的前沿进展

随着深度学习模型规模的不断扩大,如何高效地将预训练模型迁移到下游任务已成为学术界和工业界共同关注的重要问题。参数高效迁移学习(Parameter-Efficient Transfer Learning)作为一种新兴的技术范式,旨在通过修改尽可能少的参数来适应预训练模型到各种下游任务,从而在保持模型性能的同时大幅降低计算和存储成本。本文将全面介绍参数高效迁移学习在计算机视觉和多模态领域的最新研究进展,分析主流方法的技术原理,并探讨其未来发展方向。

参数高效迁移学习的背景和意义

深度学习模型的规模正在呈指数级增长。以自然语言处理领域为例,GPT-3模型拥有1750亿参数,而最新的GPT-4模型的参数量更是达到了惊人的数万亿级别。这些大规模预训练模型在各种任务上都表现出了强大的能力,但同时也带来了巨大的计算和存储开销。传统的微调(Fine-tuning)方法需要更新模型的所有参数,对于具有数十亿甚至数万亿参数的模型来说,这种方法变得越来越不切实际。

参数高效迁移学习应运而生,其核心思想是仅更新预训练模型中的一小部分参数,同时保持甚至提高模型在下游任务上的性能。这种方法不仅可以大幅降低计算和存储成本,还能有效缓解过拟合问题,特别是在小样本场景下。随着研究的深入,参数高效迁移学习已经从自然语言处理领域扩展到计算机视觉、多模态等更广泛的应用场景。

Parameter-efficient transfer learning

计算机视觉领域的主要方法

在计算机视觉领域,参数高效迁移学习主要集中在以下几个方向:

  1. 提示学习(Prompt Learning)

提示学习是一种将下游任务转化为语言模型预测问题的方法,通过设计和优化提示(Prompt)来引导模型完成特定任务。在视觉领域,研究人员提出了多种基于提示的方法:

  • CoOp (Conditional Prompt Learning): 该方法引入了条件提示学习的概念,根据输入图像动态生成提示,从而提高模型在不同任务和数据集上的泛化能力。

  • VPT (Visual Prompt Tuning): VPT在输入图像的token级别上添加可学习的提示,通过优化这些提示来适应不同的下游任务。

  • MaPLe (Multi-modal Prompt Learning): MaPLe提出了一种多模态提示学习框架,同时优化视觉和文本提示,以更好地捕捉跨模态信息。

  1. 适配器(Adapter)

适配器是一种轻量级的神经网络模块,通常插入到预训练模型的各层之间。在视觉领域,研究人员对适配器进行了多方面的改进:

  • VL-Adapter: 该方法针对视觉-语言模型设计了特定的适配器结构,有效提升了模型在跨模态任务上的性能。

  • HyperAdapter: 通过引入超网络生成任务特定的适配器参数,实现了更灵活和高效的迁移学习。

  1. 重参数化(Reparameterization)

重参数化技术通过改变模型参数的表示方式来实现高效迁移。在视觉领域,典型的方法包括:

  • LoRA (Low-Rank Adaptation): LoRA使用低秩矩阵来近似权重更新,大大减少了需要优化的参数数量。

  • BitFit: 该方法仅更新模型中的偏置项,实现了极其参数高效的迁移学习。

多模态领域的创新应用

随着视觉-语言预训练模型(如CLIP)的兴起,参数高效迁移学习在多模态领域也取得了显著进展:

  1. 跨模态提示优化
  • CPT (Cross-modal Prompt Tuning): CPT同时优化视觉和文本提示,实现了更有效的跨模态知识迁移。

  • UPT (Unified Vision and Language Prompt Learning): UPT提出了一种统一的视觉-语言提示学习框架,可以同时处理多种跨模态任务。

  1. 模态特定适配器
  • VLAP (Vision-Language Adapter Pre-training): VLAP针对不同模态设计了特定的适配器结构,并通过预训练进一步提升了模型的跨模态理解能力。
  1. 对比学习增强
  • CLIP-Adapter: 该方法结合了适配器和对比学习,通过对比损失引导模型学习更有判别性的特征表示。

Multimodal parameter-efficient learning

技术挑战与未来展望

尽管参数高效迁移学习在计算机视觉和多模态领域取得了显著进展,但仍面临一些技术挑战:

  1. 可解释性: 如何解释参数高效方法的工作原理,以及它们如何影响模型的决策过程。

  2. 鲁棒性: 在面对分布外数据和对抗样本时,如何保持参数高效方法的稳定性。

  3. 动态适应: 如何设计能够根据任务难度和数据特性动态调整参数数量的方法。

  4. 多任务学习: 如何在参数高效的框架下实现高效的多任务学习和持续学习。

  5. 大规模预训练: 如何将参数高效方法扩展到更大规模的预训练模型,如GPT-4和PaLM。

未来,参数高效迁移学习在计算机视觉和多模态领域可能会朝以下方向发展:

  1. 自适应参数高效方法: 开发能够根据任务复杂度和数据特性自动调整参数数量和结构的方法。

  2. 结合神经架构搜索: 探索如何将参数高效方法与神经架构搜索相结合,自动发现最优的迁移学习结构。

  3. 跨模态知识蒸馏: 研究如何在参数高效的框架下实现高效的跨模态知识蒸馏,进一步提升模型性能。

  4. 联邦学习集成: 探索将参数高效方法应用于联邦学习场景,实现隐私保护下的高效模型更新。

  5. 硬件感知优化: 开发能够充分利用特定硬件特性(如TPU、NPU等)的参数高效方法,进一步提升计算效率。

结论

参数高效迁移学习作为一种新兴的技术范式,正在深刻改变计算机视觉和多模态领域的模型应用方式。通过仅更新少量参数,这些方法不仅大大降低了计算和存储成本,还在多个任务上取得了与全参数微调相当甚至更好的性能。随着研究的不断深入,我们有理由相信,参数高效迁移学习将在未来的人工智能应用中发挥越来越重要的作用,推动更加高效、灵活和可扩展的智能系统的发展。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多