FAST-VQA和FasterVQA:高效端到端视频质量评估的新突破

RayRay
FAST-VQAFasterVQA视频质量评估深度学习机器学习Github开源项目

FAST-VQA和FasterVQA:高效端到端视频质量评估的新突破

随着视频内容的爆炸式增长,如何快速准确地评估视频质量成为一个迫切需要解决的问题。近期,研究人员提出了FAST-VQA和FasterVQA两个创新模型,它们在保持高精度的同时大幅提升了评估速度,为视频质量评估领域带来了新的突破。

FAST-VQA:高效的端到端视频质量评估

FAST-VQA(Fragment Sampling for Efficient End-to-end Video Quality Assessment)是一个高效的端到端视频质量评估模型,于2022年在ECCV会议上发表。该模型的核心思想是采用片段采样策略,大幅减少需要处理的视频帧数,从而提高评估速度。

FAST-VQA的主要特点包括:

  1. 采用片段采样策略,只处理视频中的关键片段,大幅减少计算量
  2. 使用Video Swin Transformer作为骨干网络,有效捕捉视频的时空特征
  3. 引入全局-局部池化模块(GRPB),增强对全局和局部特征的建模能力
  4. 设计了IP-NLR头部网络,可以生成视频的局部质量图

通过这些创新设计,FAST-VQA在多个公开数据集上取得了当时最佳的性能,同时inference速度比之前的方法快了10倍以上。

FasterVQA:进一步提升效率的改进版本

在FAST-VQA的基础上,研究人员进一步提出了FasterVQA模型,将片段采样的思想扩展到3D版本,在保持相似性能的同时将速度提升了4倍。FasterVQA的主要改进包括:

  1. 采用3D片段采样,同时在时间和空间维度上进行采样
  2. 支持自适应多尺度推理(AMI),一个模型可以处理不同尺度的输入
  3. 进一步优化网络结构,在Apple M1 CPU上可以实现14倍实时推理速度

FasterVQA示意图

FasterVQA在多个主流数据集上的表现都接近或超过了FAST-VQA,同时计算量大幅降低。例如在KoNViD-1k数据集上,FasterVQA的PLCC达到0.864,而FAST-VQA为0.855,但FasterVQA的MACs只有69G,而FAST-VQA为279G。

模型的实际应用

FAST-VQA和FasterVQA可以方便地用于实际视频质量评估任务。研究人员提供了预训练模型和使用脚本,只需一行命令即可对单个MP4视频进行质量评估:

python vqa.py -m [MODEL_TYPE] -v [YOUR_INPUT_FILE_PATH]

其中MODEL_TYPE可以选择FasterVQA、FAST-VQA等不同版本。评估结果会给出一个0到1之间的质量分数,0分表示极差质量,1分表示极好质量。

开源工具箱和可复现代码

为了促进视频质量评估领域的研究,FAST-VQA和FasterVQA的作者将其开源为一个完整的视频质量评估工具箱。该工具箱具有以下特点:

  1. 提供了多种预训练模型,包括FAST-VQA、FasterVQA及其变体
  2. 支持在大规模数据集(如LSVQ)上训练模型
  3. 提供了在小规模数据集上微调的脚本
  4. 模块化设计,方便开发者修改网络结构、采样策略和损失函数等

研究人员还公开了训练日志和实验结果,方便其他研究者复现和比较。

未来展望

FAST-VQA和FasterVQA的成功为高效视频质量评估开辟了新的方向。未来可能的研究方向包括:

  1. 进一步优化采样策略,在更少的计算量下获得更准确的评估结果
  2. 探索更轻量级的网络结构,使模型可以在移动设备上实时运行
  3. 结合其他模态信息(如音频),提高评估的全面性
  4. 针对特定应用场景(如直播、VR等)开发专门的评估模型

总的来说,FAST-VQA和FasterVQA为高效端到端视频质量评估提供了一个强大的基础,相信未来会有更多基于这些工作的创新研究出现。

结语

FAST-VQA和FasterVQA的提出为视频质量评估领域带来了新的活力。这些模型不仅在学术界取得了突破性进展,也为实际应用提供了高效可靠的解决方案。随着视频内容的持续增长,高效准确的视频质量评估技术将发挥越来越重要的作用,FAST-VQA和FasterVQA无疑为这一领域的发展指明了方向。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多