FMBench: 强大的基础模型基准测试工具

Ray

FMBench: 为AWS上的基础模型提供全面基准测试解决方案

在当今快速发展的人工智能领域,基础模型(Foundation Models, FM)的性能评估至关重要。为了满足这一需求,AWS推出了名为FMBench的开源Python工具包,旨在为部署在各种AWS生成式AI服务上的基础模型提供全面的基准测试解决方案。

FMBench的核心功能与特点

FMBench具有以下几个显著特点:

  1. 高度灵活: FMBench支持多种实例类型(如g5、p4d、p5、Inf2等)、推理容器(如DeepSpeed、TensorRT、HuggingFace TGI等)以及各种参数组合(如张量并行度、滚动批处理等)。这种灵活性使得用户可以根据具体需求进行全面的性能测试。

  2. 广泛兼容: 无论是开源模型、第三方模型还是企业自训练的专有模型,FMBench都能胜任基准测试工作。它不仅可以评估模型的性能,还能测量模型的准确性。值得一提的是,最新版本(2.0.0)引入了由LLM评估器组成的评审团功能,进一步提升了模型评估的可靠性。

  3. 部署灵活: FMBench可以在任何支持Python运行的AWS平台上使用,包括Amazon EC2、Amazon SageMaker,甚至AWS CloudShell。这种灵活性确保了测试结果不会受到网络延迟的影响。

FMBench部署示意图

FMBench的工作原理

FMBench的工作流程如下:

  1. 通过FMBench部署模型或连接到已部署的端点。
  2. 向模型端点发送推理请求。
  3. 收集关键指标,如推理延迟、每分钟事务数、错误率和每次事务成本等。
  4. 生成包含解释性文本、表格和图表的Markdown格式报告。

这些报告为用户提供了宝贵的洞察,帮助他们为特定用例选择最佳的服务堆栈(实例类型、推理容器和配置参数)。

FMBench的实际应用

性能基准测试

以Llama2-13b模型为例,FMBench可以在不同的SageMaker实例类型上运行基准测试,使用来自LongBench数据集的Q&A任务提示(3000-3840个token)。测试结果以图表形式呈现,展示了不同实例类型的推理延迟、每分钟事务数和并发级别等关键指标。

Llama2-13b性能对比图

此外,FMBench还提供了详细的实验信息表格,包括最佳实例类型、平均提示token数、token吞吐量、平均完成token数、各种延迟指标(平均值、p50、p95、p99)以及每次事务的价格等。

准确性评估

FMBench引入了LLM评估器组成的评审团(PoLL)来评估模型准确性。这种方法可以为Amazon Bedrock上的各种基础模型生成准确性评估图表,帮助用户选择最适合其工作负载的模型。

准确性随提示大小的变化

整体准确性对比

FMBench支持的模型和平台

FMBench支持多种模型和AWS平台的组合,包括:

  • 模型: 从Anthropic Claude-3系列到Llama3、Mistral、Amazon Titan等多种主流模型。
  • 平台: 覆盖EC2(g5、Inf2/Trn1)、SageMaker(g4dn/g5/p3、Inf2/Trn1、P4、P5)以及Bedrock(按需吞吐量和预配置吞吐量)。

这种广泛的支持使得FMBench能够满足不同用户在各种场景下的基准测试需求。

快速上手FMBench

FMBench作为Python包发布在PyPI上,安装后可作为命令行工具使用。以下是在SageMaker笔记本上快速开始使用FMBench的步骤:

  1. 创建并激活Python环境:

    conda create --name fmbench_python311 -y python=3.11 ipykernel
    source activate fmbench_python311
    pip install -U fmbench
    
  2. 准备配置文件,可以使用FMBench GitHub仓库中提供的示例配置文件。

  3. 通过CloudFormation模板部署必要的AWS资源。

  4. 运行FMBench命令:

    account=`aws sts get-caller-identity | jq .Account | tr -d '"'`
    region=`aws configure get region`
    fmbench --config-file s3://sagemaker-fmbench-read-${region}-${account}/configs/llama2/7b/config-llama2-7b-g5-quick.yml > fmbench.log 2>&1
    
  5. 查看生成的报告和指标,这些内容会保存在本地的results目录和指定的S3存储桶中。

FMBench的高级应用

客户端-服务器配置

FMBench支持一种特殊的客户端-服务器配置,允许在一个AWS账户(服务器账户)中部署模型端点,而在另一个AWS账户(客户端账户)中运行FMBench进行测试。这种配置特别适合平台团队为数据科学团队或应用团队提供长期可用的LLM端点进行基准测试。

FMBench客户端-服务器配置

这种方法简化了流程,使平台团队能够轻松部署和管理模型,而其他团队则可以专注于使用不同数据集、性能标准和推理参数进行测试。

结语

FMBench为AWS用户提供了一个强大而灵活的工具,用于全面评估和比较各种基础模型在不同AWS生成式AI服务上的性能。通过提供详细的性能指标和准确性评估,FMBench帮助用户做出明智的决策,选择最适合其特定用例的模型和部署方案。随着AI技术的不断发展,FMBench这样的工具将在优化AI系统性能和成本效益方面发挥越来越重要的作用。

🔗 相关链接:

通过使用FMBench,AWS用户可以更好地理解和优化其AI工作负载,从而在性能、成本和准确性之间取得最佳平衡。无论您是数据科学家、ML工程师还是IT决策者,FMBench都是一个值得关注和使用的强大工具。

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号