在人工智能和自然语言处理领域,检索增强生成(Retrieval Augmented Generation, RAG)系统正在日益受到关注。RAG系统通过结合外部知识库和大型语言模型(LLM),可以生成更加准确、可靠的回答。然而,RAG系统的性能在很大程度上依赖于其检索模块的效果。为了进一步提升RAG系统的检索性能,研究人员提出了一种创新的方法 - 微调嵌入模型。
RAG系统通常由以下关键组件构成:
知识库:包含大量结构化或非结构化的文本信息。
嵌入模型:将文本转化为向量表示。
向量数据库:存储文本的向量表示,支持高效的相似度搜索。
检索模块:根据用户查询,从向量数据库中检索相关信息。
大型语言模型:结合检索到的信息和用户查询,生成最终回答。
在这个过程中,嵌入模型扮演着至关重要的角色。它决定了文本如何被表示为向量,进而影响检索的准确性。因此,改进嵌入模型可以直接提升RAG系统的整体性能。
尽管预训练的通用嵌入模型(如OpenAI的text-embedding-ada-002)在许多任务中表现出色,但它们可能无法完全适应特定领域或任务的需求。例如,在处理金融、法律或医疗等专业领域的文本时,通用模型可能无法准确捕捉领域特有的语义关系。
微调嵌入模型可以解决这个问题,使模型更好地适应特定领域或任务。然而,传统的微调方法通常需要大量人工标注的数据,这在实际应用中往往是不可行的。
为了克服数据标注的挑战,研究人员提出了一种利用合成数据集进行嵌入模型微调的方法。这种方法的核心思想是利用大型语言模型(如GPT-3.5或GPT-4)自动生成与给定文本相关的问题,从而创建"问题-文本"对作为训练数据。
具体步骤如下:
数据准备:将原始文档处理成适当长度的文本块。
合成数据生成:对每个文本块,使用LLM生成若干个相关问题。这些问题-文本对构成了正样本。
模型微调:使用生成的数据集对预训练的开源嵌入模型(如BAAI/bge-small-en)进行微调。
评估:比较微调前后模型的检索性能。
研究人员在金融领域的PDF文档数据集上进行了实验。结果表明,微调后的嵌入模型在多个评估指标上都获得了显著提升:
命中率(Hit Rate):微调后的模型达到84%,比基础模型提高了6个百分点,接近OpenAI的text-embedding-ada-002模型(87%)的性能。
InformationRetrievalEvaluator指标:在余弦相似度准确率、精确率、召回率等多个指标上,微调模型相比基础模型提升了5-10%.
这些结果充分证明了微调嵌入模型的有效性,特别是在没有大量人工标注数据的情况下。
如果你想在自己的项目中尝试这种方法,可以按以下步骤进行:
安装必要的依赖:
pip install -r requirements.txt
这些notebooks设计得非常轻量,可以在大多数机器上运行,无需特殊的硬件要求。
微调嵌入模型为提升RAG系统性能提供了一种高效、低成本的方法。通过利用合成数据集,我们可以在没有大量人工标注数据的情况下,显著改善模型在特定领域或任务中的表现。
这种方法不仅适用于英语文本,也可以扩展到其他语言。例如,对于德语等非英语文本,我们可以使用相同的流程,只需将数据生成和微调过程中使用的模型替换为相应语言的版本。
未来的研究方向可能包括:
随着RAG系统在各行各业的广泛应用,微调嵌入模型的技术将在提升系统性能、改善用户体验方面发挥越来越重要的作用。我们期待看到更多创新方法的出现,推动RAG技术的进一步发展。
通过这种方法,我们可以让RAG系统更好地理解和处理特定领域的信息,为用户提供更加精准、相关的回答。无论是在企业内部知识管理、客户服务、还是专业领域的信息检索等场景中,优化后的RAG系统都将发挥重要作用,为信息获取和决策支持带来新的可能。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支 持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号