GenerativeAIExamples学习资料汇总 - NVIDIA开源的生成式AI参考工作流

Ray

GenerativeAIExamples学习资料汇总 - NVIDIA开源的生成式AI参考工作流

NVIDIA的GenerativeAIExamples项目是一个为生成式AI开发人员提供的入门资源库,旨在帮助开发者将NVIDIA的软件生态系统集成到生成式AI系统中。无论你是构建RAG管道、智能代理工作流,还是微调模型,这个资源库都能帮助你无缝地将NVIDIA的技术集成到开发堆栈中。

NVIDIA GenerativeAIExamples项目banner

项目主要内容

  1. RAG (检索增强生成)示例和笔记本

    • 基础RAG示例:使用LangChain和LlamaIndex
    • 高级RAG示例:多轮对话、多模态数据、结构化数据等
    • 各种RAG相关的Jupyter笔记本
  2. 微调模型相关资源

  3. 行业应用案例,如医疗设备培训助手

  4. 评估和可观察性工具

  5. 社区贡献的示例

快速上手

要快速体验NVIDIA RAG管道,可以按照以下步骤操作:

  1. 获取NVIDIA API密钥
  2. 克隆代码库并运行基础RAG示例:
git clone https://github.com/nvidia/GenerativeAIExamples.git
cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/
docker compose up -d --build

然后访问 https://localhost:8090/ 即可使用示例RAG playground。

学习资源

  1. 示例代码

  2. Jupyter笔记本

  3. 指南文档

  4. 工具

  5. 社区贡献

相关项目

通过学习和使用这些资源,开发者可以快速掌握NVIDIA的生成式AI工具和框架,构建高性能的AI应用。欢迎访问项目GitHub页面获取更多信息,并为项目做出贡献!

avatar
0
0
0
相关项目
Project Cover

TensorRT

NVIDIA TensorRT 开源软件提供插件和 ONNX 解析器的源码,展示 TensorRT 平台功能的示例应用。这些组件是 TensorRT GA 版本的一部分,并包含扩展和修复。用户可以轻松安装 TensorRT Python 包或根据构建指南编译。企业用户可使用 NVIDIA AI Enterprise 套件,并可加入 TensorRT 社区获取最新产品更新和最佳实践。

Project Cover

cortex

Cortex是一个OpenAI兼容的多引擎AI平台,提供命令行界面和客户端库,支持构建LLM应用。支持的引擎包括GGUF、ONNX和TensorRT-LLM,兼容多种硬件平台。Cortex可作为独立服务器运行或作为库导入,适配MacOS、Windows和Ubuntu操作系统。

Project Cover

GenerativeAIExamples

NVIDIA提供的生成式AI示例,使用CUDA-X软件栈和NVIDIA GPU,展示快速部署、测试和扩展AI模型的方法。包括最新的RAG管道构建技巧、实验性示例和企业应用,支持本地和远程推理,集成流行LLM编程框架,并附有详细开发文档。

Project Cover

FasterTransformer

FasterTransformer不仅支持多框架集成,还针对NVIDIA新一代GPU优化了编解码性能,极大提升了操作效率和处理速度。包含模型支持、性能对比及API演示的详细文档,有助于用户深入了解并有效使用FasterTransformer。

Project Cover

DIGITS

DIGITS是一个支持Caffe、Torch和Tensorflow框架的深度学习模型训练Web应用,提供详尽的用户文档和实用案例,支持Ubuntu 14.04和16.04操作系统,专为研究人员和开发者设计。

Project Cover

FastSpeech2

FastSpeech 2,面向精准快速的文本到语音转换,基于PyTorch与Espnet技术,配备Nvidia与MelGAN工具,极致优化语音生成效果,适合各类开发者利用和研究。

Project Cover

Taiwan-LLM

Llama-3-Taiwan-70B是专为繁体中文与英语环境设计的高性能语言模型,具有70亿参数规模,涵盖多个行业领域。该模型透过NVIDIA NeMo技术优化,已完成在台北一号的NVIDIA DGX H100系统上的训练,获多个企业支持。

Project Cover

iAI

这篇文章提供了在Ubuntu平台上设置AI实验环境的详细指导,涵盖硬件要求、双系统安装、NVIDIA驱动、CUDA、cuDNN、Anaconda、OpenCV、Docker、TensorRT、Pytorch等软件的安装与配置。内容包括从基础环境搭建到深度学习算法如YOLO V3和Faster R-CNN的实际应用,并附有常见问题解答和最佳实践,帮助用户高效构建AI开发环境。

Project Cover

DeepLearningExamples

提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号