GFlowNet: 一种新型生成式模型框架及其在分子设计中的应用

RayRay
GFlowNet图生成机器学习组合优化神经网络Github开源项目

GFlowNet简介

GFlowNet(Generative Flow Network)是由Yoshua Bengio等人于2021年提出的一种新型生成式模型框架。与传统的生成模型不同,GFlowNet特别适用于离散、组合对象的生成,如分子结构、图结构等。它通过学习在有向无环图中的流来实现对目标分布的采样,为解决复杂的组合优化问题提供了新的思路。

GFlowNet的核心思想是将对象的构建过程建模为有向无环图中的流。每个节点代表一个部分构建的对象,边代表构建动作。通过学习这个图中的流,GFlowNet可以生成与目标分布成比例的样本。这种方法不仅能产生多样化的高质量样本,还可以有效地探索未知的高奖励区域。

GFlowNet的工作原理

流网络建模

GFlowNet将对象的构建过程建模为一个有向无环图,称为流网络。在这个网络中:

  • 每个节点代表一个部分构建的对象状态
  • 边代表从一个状态到另一个状态的转移动作
  • 源节点代表初始空状态
  • 汇节点代表完全构建的对象

网络中的流量定义了从源节点到汇节点的概率分布。GFlowNet的目标是学习一个流函数,使得到达每个汇节点的流量与该节点对应对象的目标概率成正比。

流一致性方程

为了学习合适的流函数,GFlowNet引入了流一致性方程。对于非源节点s',流一致性方程要求:

∑(s,a:T(s,a)=s') F(s,a) = R(s') + ∑(a'∈A(s')) F(s',a')

其中F(s,a)表示从状态s经动作a的流量,R(s')表示s'的奖励(如果s'是汇节点),A(s')表示s'的可用动作集。

训练目标

GFlowNet的训练目标是最小化流一致性方程的违反程度。具体来说,损失函数定义为:

L(θ) = ∑(s'≠s0) (log[ϵ + ∑(s,a:T(s,a)=s') exp(Fθ(s,a))] - log[ϵ + R(s') + ∑(a'∈A(s')) exp(Fθ(s',a'))])^2

其中Fθ表示参数化的流函数,ϵ是一个小的正数用于数值稳定性。

GFlowNet在分子设计中的应用

GFlowNet在分子设计领域展现出了巨大的潜力。传统的分子设计方法通常难以在高维离散空间中有效探索,而GFlowNet提供了一种新的范式。

分子图生成

在分子设计任务中,GFlowNet将分子的构建过程建模为逐步添加原子和键的过程。具体来说:

  1. 状态表示:每个状态表示一个部分构建的分子图。
  2. 动作空间:包括添加新原子、添加新键、结束生成等动作。
  3. 奖励函数:根据分子的目标属性(如结合亲和力、可溶性等)定义。

使用图神经网络(GNN)作为策略网络,GFlowNet可以学习到有效的分子构建策略。

GFlowNet分子生成示意图

多目标优化

GFlowNet天然适合处理多目标优化问题。通过定义多维奖励函数,GFlowNet可以同时优化分子的多个属性,如药效、毒性、合成难度等。这为药物发现提供了强大的工具。

活性学习

在实际应用中,精确的奖励函数通常难以获得。GFlowNet可以与活性学习结合,通过迭代采样和评估来逐步改进模型。这种方法可以大大减少昂贵实验的需求,提高分子设计的效率。

GFlowNet与其他方法的比较

与MCMC方法的比较

相比于马尔可夫链蒙特卡洛(MCMC)方法,GFlowNet具有以下优势:

  1. 直接生成:无需长链采样,可快速生成样本。
  2. 模式发现:能更有效地发现和跳转到远离当前分布的新模式。
  3. 并行化:生成过程天然可并行,提高效率。

与强化学习的比较

与传统强化学习方法相比,GFlowNet的优势包括:

  1. 多样性:通过拟合整个分布而非最大化期望奖励,能生成更多样的样本。
  2. 探索效率:更容易发现和利用远离当前策略的高奖励区域。
  3. 稳定性:训练过程更加稳定,不易陷入局部最优。

GFlowNet与其他方法的比较

GFlowNet的实际应用案例

片段化分子设计

研究人员使用GFlowNet进行了基于片段的分子设计,目标是优化针对sEH蛋白的分子。结果表明,GFlowNet能够生成多样化的高质量候选分子,超越了传统的PPO和MARS方法。

多目标优化分子设计

在另一项研究中,GFlowNet被应用于多目标优化分子设计任务,同时考虑了分子的QED、SA和分子量等多个目标。实验结果显示,GFlowNet能够有效地在多个目标之间进行权衡,生成满足复杂要求的分子。

GFlowNet在分子设计中的应用效果

GFlowNet的未来发展方向

尽管GFlowNet已经展现出了巨大的潜力,但它仍处于快速发展阶段。一些值得关注的未来研究方向包括:

  1. 理论分析:深入研究GFlowNet的收敛性和泛化性能。
  2. 架构改进:设计更高效的神经网络架构,以处理更复杂的问题。
  3. 应用拓展:将GFlowNet应用到更广泛的领域,如材料设计、蛋白质工程等。
  4. 与其他方法结合:探索GFlowNet与其他机器学习方法(如变分推断、元学习等)的结合。

结论

GFlowNet作为一种新兴的生成式模型框架,为解决复杂的离散优化问题提供了强大的工具。它在分子设计等领域已经展现出了巨大的潜力,能够生成多样化的高质量样本,并有效探索未知的高奖励区域。随着研究的深入和应用的拓展,GFlowNet有望在科学发现和工程优化等多个领域产生重要影响。

对于研究人员和实践者来说,深入了解GFlowNet的原理和应用,并探索其在具体问题中的潜力,将是一个充满机遇的方向。随着开源工具和资源的不断丰富,GFlowNet的应用门槛也在不断降低,为更多创新应用的出现创造了条件。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多