GraphRAG Local Ollama: 结合本地模型的知识图谱检索增强生成

Ray

graphrag-local-ollama

GraphRAG Local Ollama:结合本地模型的知识图谱检索增强生成

在人工智能和自然语言处理领域,检索增强生成(Retrieval-Augmented Generation, RAG)技术正在迅速发展。作为这一领域的新星,GraphRAG Local Ollama项目将Microsoft的GraphRAG与Ollama本地模型相结合,为用户提供了一种高效、低成本的知识图谱RAG解决方案。本文将深入探讨这个项目的特点、安装配置过程以及使用方法,帮助读者全面了解这一创新技术。

GraphRAG简介:突破传统RAG的局限

GraphRAG是由Microsoft提出的一种创新RAG方法,旨在解决传统RAG在处理全局问题时的局限性。与仅依赖文本片段的语义搜索不同,GraphRAG采用结构化、分层的方法来构建和利用知识图谱。

传统的RAG在回答诸如“数据集中的主要主题是什么?”这类全局问题时往往表现不佳,因为这本质上是一个查询聚焦摘要(Query Focused Summarization, QFS)任务,而非简单的信息检索任务。同时,现有的QFS方法也难以扩展到典型RAG系统所索引的大规模文本数据。

GraphRAG通过两个阶段来构建基于图的文本索引:首先从源文档中提取实体知识图谱,然后为所有密切相关的实体组预生成社区摘要。在回答问题时,系统利用每个社区摘要生成部分响应,最后将所有部分响应汇总为最终答案。这种方法在处理百万级token规模数据集的全局理解问题时,相比简单的RAG基线,在答案的全面性和多样性方面都有显著提升。

GraphRAG Local Ollama:本地化的革新

GraphRAG Local Ollama项目是对Microsoft GraphRAG的一次富有创意的改编。它的核心目标是支持使用Ollama下载的本地模型,从而摆脱对昂贵的OpenAI API模型的依赖,实现高效且经济的本地推理。

这个项目具有以下几个突出特点:

  1. 本地模型支持: 利用Ollama提供的本地模型进行LLM(大语言模型)推理和嵌入生成,支持如llama3、mistral、gemma2、phi3等多种模型。

  2. 成本效益: 通过使用本地模型,大大降低了依赖商业API的成本,特别适合预算有限的研究者和小型团队。

  3. 简易安装: 项目提供了详细的安装指南,使用conda环境管理,简化了安装过程。

  4. 灵活配置: 用户可以根据需求灵活选择和配置不同的语言模型和嵌入模型。

  5. 可视化支持: 集成了图形可视化功能,帮助用户更直观地理解知识图谱结构。

安装与配置

要开始使用GraphRAG Local Ollama,需要按照以下步骤进行安装和配置:

  1. 创建conda环境:

    conda create -n graphrag-ollama-local python=3.10
    conda activate graphrag-ollama-local
    
  2. 安装Ollama: 访问Ollama官网下载安装,或使用命令行安装:

    curl -fsSL https://ollama.com/install.sh | sh
    pip install ollama
    
  3. 下载所需模型:

    ollama pull mistral  #LLM
    ollama pull nomic-embed-text  #嵌入模型
    
  4. 克隆项目仓库:

    git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
    cd graphrag-local-ollama/
    
  5. 安装graphrag包:

    pip install -e .
    
  6. 创建输入目录:

    mkdir -p ./ragtest/input
    
  7. 复制示例数据:

    cp input/* ./ragtest/input
    
  8. 初始化配置文件:

    python -m graphrag.index --init --root ./ragtest
    
  9. 修改settings.yaml配置文件: 将LLM和嵌入模型配置更新为Ollama本地模型。

使用方法

完成安装和配置后,可以按照以下步骤使用GraphRAG Local Ollama:

  1. 运行索引创建:

    python -m graphrag.index --root ./ragtest
    
  2. 执行查询:

    python -m graphrag.query --root ./ragtest --method global "Your query here"
    
  3. 可视化知识图谱: 在settings.yaml中将graphml设置为true,然后使用提供的visualize-graphml.py脚本或Gephi等工具进行可视化。

进阶使用技巧

  1. 模型选择: Ollama提供了多种模型选择,用户可以根据任务需求和硬件条件选择合适的模型。例如,对于需要大上下文窗口的任务,可以考虑使用支持32k或更长上下文的模型。

  2. 性能优化: 对于GPU资源有限的环境,可以尝试使用更小的模型或调整批处理大小来优化性能。

  3. 自定义数据: 除了使用示例数据,用户还可以将自己的文本数据(.txt格式)添加到输入目录中,以构建特定领域的知识图谱。

  4. 集成开发: 开发者可以将GraphRAG Local Ollama集成到自己的项目中,实现更复杂的应用场景,如智能问答系统、文档分析工具等。

结语

GraphRAG Local Ollama项目为知识图谱检索增强生成技术带来了新的可能性。通过结合Microsoft的GraphRAG和Ollama的本地模型,它不仅降低了使用门槛和成本,还为研究者和开发者提供了一个灵活、高效的RAG解决方案。随着项目的不断发展和社区的贡献,我们可以期待看到更多基于GraphRAG Local Ollama的创新应用出现,推动自然语言处理和人工智能技术的进步。

无论您是对RAG技术感兴趣的研究者,还是寻求高效知识管理解决方案的开发者,GraphRAG Local Ollama都值得一试。它不仅能帮助您更好地理解和利用大规模文本数据,还能为您的项目带来新的思路和可能性。让我们一起探索GraphRAG Local Ollama的潜力,共同推动知识图谱和自然语言处理技术的发展!

avatar
0
0
0
相关项目
Project Cover

graphrag

GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。

Project Cover

GraphRAG4OpenWebUI

GraphRAG4OpenWebUI 为 Open WebUI 提供了一个强大而高效的信息检索系统,集成了微软研究院的 GraphRAG 技术,支持本地搜索、全球搜索和 Tavily 搜索。该项目专为需要精确和全面搜索结果的开放网络用户界面设计,并且支持本地语言模型和嵌入模型,增强了灵活性和隐私性。通过多个 API 接口,用户可以轻松实现复杂的信息检索需求。

Project Cover

Autogen_GraphRAG_Ollama

Autogen_GraphRAG_Ollama是一个将GraphRAG与AutoGen代理结合的开源项目。它利用Ollama的本地LLM实现免费离线嵌入和推理,通过函数调用整合GraphRAG的知识搜索方法。项目支持本地模型推理和嵌入,扩展了AutoGen以支持非OpenAI LLM的函数调用,并集成Chainlit UI处理持续对话和用户交互,打造了一个功能完备的本地化多智能体RAG系统。

Project Cover

GraphRAG-Local-UI

GraphRAG-Local-UI是一个开源的知识图谱构建和查询工具,支持本地部署大语言模型和嵌入模型。该项目提供直观的界面用于数据索引、提示词调优和信息查询,并具备实时知识图谱可视化功能。它适用于需要构建和探索复杂知识网络的研究人员和开发者,无需依赖云服务即可实现高效的知识管理和信息检索。

Project Cover

graphrag-local-ollama

GraphRAG Local Ollama是基于Microsoft GraphRAG的改编项目,支持使用Ollama下载的本地模型。该项目通过构建图形化文本索引,利用本地语言模型和嵌入模型回答全局性问题,适用于大规模文本语料库。相比OpenAPI模型,它具有高效、低成本的本地推理优势,同时提供简便的设置流程。这一工具特别适合需要处理私有数据或大量文本的用户。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号