在人工智能和自然语言处理领域,检索增强生成(Retrieval-Augmented Generation, RAG)技术正在迅速发展。作为这一领域的新星,GraphRAG Local Ollama项目将Microsoft的GraphRAG与Ollama本地模型相结合,为用户提供了一种高效、低成本的知识图谱RAG解决方案。本文将深入探讨这个项目的特点、安装配置过程以及使用方法,帮助读者全面了解这一创新技术。
GraphRAG是由Microsoft提出的一种创新RAG方法,旨在解决传统RAG在处理全局问题时的局限性。与仅依赖文本片段的语义搜索不同,GraphRAG采用结构化、分层的方法来构建和利用知识图谱。
传统的RAG在回答诸如“数据集中的主要主题是什么?”这类全局问题时往往表现不佳,因为这本质上是一个查询聚焦摘要(Query Focused Summarization, QFS)任务,而非简单的信息检索任务。同时,现有的QFS方法也难以扩展到典型RAG系统所索引的大规模文本数据。
GraphRAG通过两个阶段来构建基于图的文本索引:首先从源文档中提取实体知识图谱,然后为所有密切相关的实体组预生成社区摘要。在回答问题时,系统利用每个社区摘要生成部分响应,最后将所有部分响应汇总为最终答案。这种方法在处理百万级token规模数据集的全局理解问题时,相比简单的RAG基线,在答案的全面性和多样性方面都有显著提升。
GraphRAG Local Ollama项目是对Microsoft GraphRAG的一次富有创意的改编。它的核心目标是支持使用Ollama下载的本地模型,从而摆脱对昂贵的OpenAI API模型的依赖,实现高效且经济的本地推理。
这个项目具有以下几个突出特点:
本地模型支持: 利用Ollama提供的本地模型进行LLM(大语言模型)推理和嵌入生成,支持如llama3、mistral、gemma2、phi3等多种模型。
成本效益: 通过使用本地模型,大大降低了依赖商业API的成本,特别适合预算有限的研究者和小型团队。
简易安装: 项目提供了详细的安装指南,使用conda环境管理,简化了安装过程。
灵活配置: 用户可以根据需求灵活选择和配置不同的语言模型和嵌入模型。
可视化支持: 集成了图形可视化功能,帮助用户更直观地理解知识图谱结构。
要开始使用GraphRAG Local Ollama,需要按照以下步骤进行安装和配置:
创建conda环境:
conda create -n graphrag-ollama-local python=3.10
conda activate graphrag-ollama-local
安装Ollama: 访问Ollama官网下载安装,或使用命令行安装:
curl -fsSL https://ollama.com/install.sh | sh
pip install ollama
下载所需模型:
ollama pull mistral #LLM
ollama pull nomic-embed-text #嵌入模型
克隆项目仓库:
git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
cd graphrag-local-ollama/
安装graphrag包:
pip install -e .
创建输入目录:
mkdir -p ./ragtest/input
复 制示例数据:
cp input/* ./ragtest/input
初始化配置文件:
python -m graphrag.index --init --root ./ragtest
修改settings.yaml配置文件: 将LLM和嵌入模型配置更新为Ollama本地模型。
完成安装和配置后,可以按照以下步骤使用GraphRAG Local Ollama:
运行索引创建:
python -m graphrag.index --root ./ragtest
执行查询:
python -m graphrag.query --root ./ragtest --method global "Your query here"
可视化知识图谱:
在settings.yaml
中将graphml
设置为true
,然后使用提供的visualize-graphml.py
脚本或Gephi等工具进行可视化。
模型选择: Ollama提供了多种模型选择,用户可以根据任务需求和硬件条件选择合适的模型。例如,对于需要大上下文窗口的任务,可以考虑使用支持32k或更长上下文的模型。
性能优化: 对于GPU资源有限的环境,可以尝试使用更小的模型或调整批处理大小来优化性能。
自定义数据: 除了使用示例数据,用户还可以将自己的文本数据(.txt格式)添加到输入目录中,以构建特定领域的知识图谱。
集成开发: 开发者可以将GraphRAG Local Ollama集成到自己的项目中,实现更复杂的应用场景,如智能问答系统、文档分析工具等。
GraphRAG Local Ollama项目为知识图谱检索增强生成技术带来了新的可能性。通过结合Microsoft的GraphRAG和Ollama的本地模型,它不仅降低了使用门槛和成本,还为研究者和开发者提供了一个灵活、高效的RAG解决方案。随着项目的不断发展和社区的贡献,我们可以期待看到更多基于GraphRAG Local Ollama的创新应用出现,推动自然语言处理和人工智能技术的进步。
无论您是对RAG技术感兴趣的研究者,还是寻求高效知识管理解决方案的开发者,GraphRAG Local Ollama都值得一试。它不仅能帮助您更好地理解和利用大规模文本数据,还能为您的项目带来新的思路和可能性。让我们一起探索GraphRAG Local Ollama的潜力,共同推动知识图谱和自然语言处理技术的发展!
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效 率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。