在人工智能和自然语言处理领域,检索增强生成(Retrieval-Augmented Generation, RAG)技术正在迅速发展。作为这一领域的新星,GraphRAG Local Ollama项目将Microsoft的GraphRAG与Ollama本地模型相结合,为用户提供了一种高效、低成本的知识图谱RAG解决方案。本文将深入探讨这个项目的特点、安装配置过程以及使用方法,帮助读者全面了解这一创新技术。
GraphRAG是由Microsoft提出的一种创新RAG方法,旨在解决传统RAG在处理全局问题时的局限性。与仅依赖文本片段的语义搜索不同,GraphRAG采用结构化、分层的方法来构建和利用知识图谱。
传统的RAG在回答诸如“数据集中的主要主题是什么?”这类全局问题时往往表现不佳,因为这本质上是一个查询聚焦摘要(Query Focused Summarization, QFS)任务,而非简单的信息检索任务。同时,现有的QFS方法也难以扩展到典型RAG系统所索引的大规模文本数据。
GraphRAG通过两个阶段来构建基于图的文本索引:首先从源文档中提取实体知识图谱,然后为所有密切相关的实体组预生成社区摘要。在回答问题时,系统利用每个社区摘要生成部分响应,最后将所有部分响应汇总为最终答案。这种方法在处理百万级token规模数据集的全局理解问题时,相比简单的RAG基线,在答案的全面性和多样性方面都有显著提升。
GraphRAG Local Ollama项目是对Microsoft GraphRAG的一次富有创意的改编。它的核心目标是支持使用Ollama下载的本地模型,从而摆脱对昂贵的OpenAI API模型的依赖,实现高效且经济的本地推理。
这个项目具有以下几个突出特点:
本地模型支持: 利用Ollama提供的本地模型进行LLM(大语言模型)推理和嵌入生成,支持如llama3、mistral、gemma2、phi3等多种模型。
成本效益: 通过使用本地模型,大大降低了依赖商业API的成本,特别适合预算有限的研究者和小型团队。
简易安装: 项目提供了详细的安装指南,使用conda环境管理,简化了安装过程。
灵活配置: 用户可以根据需求灵活选择和配置不同的语言模型和嵌入模型。
可视化支持: 集成了图形可视化功能,帮助用户更直观地理解知识图谱结构。
要开始使用GraphRAG Local Ollama,需要按照以下步骤进行安装和配置:
创建conda环境:
conda create -n graphrag-ollama-local python=3.10
conda activate graphrag-ollama-local
安装Ollama: 访问Ollama官网下载安装,或使用命令行安装:
curl -fsSL https://ollama.com/install.sh | sh
pip install ollama
下载所需模型:
ollama pull mistral #LLM
ollama pull nomic-embed-text #嵌入模型
克隆项目仓库:
git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
cd graphrag-local-ollama/
安装graphrag包:
pip install -e .
创建输入目录:
mkdir -p ./ragtest/input
复 制示例数据:
cp input/* ./ragtest/input
初始化配置文件:
python -m graphrag.index --init --root ./ragtest
修改settings.yaml配置文件: 将LLM和嵌入模型配置更新为Ollama本地模型。
完成安装和配置后,可以按照以下步骤使用GraphRAG Local Ollama:
运行索引创建:
python -m graphrag.index --root ./ragtest
执行查询:
python -m graphrag.query --root ./ragtest --method global "Your query here"
可视化知识图谱:
在settings.yaml
中将graphml
设置为true
,然后使用提供的visualize-graphml.py
脚本或Gephi等工具进行可视化。
模型选择: Ollama提供了多种模型选择,用户可以根据任务需求和硬件条件选择合适的模型。例如,对于需要大上下文窗口的任务,可以考虑使用支持32k或更长上下文的模型。
性能优化: 对于GPU资源有限的环境,可以尝试使用更小的模型或调整批处理大小来优化性能。
自定义数据: 除了使用示例数据,用户还可以将自己的文本数据(.txt格式)添加到输入目录中,以构建特定领域的知识图谱。
集成开发: 开发者可以将GraphRAG Local Ollama集成到自己的项目中,实现更复杂的应用场景,如智能问答系统、文档分析工具等。
GraphRAG Local Ollama项目为知识图谱检索增强生成技术带来了新的可能性。通过结合Microsoft的GraphRAG和Ollama的本地模型,它不仅降低了使用门槛和成本,还为研究者和开发者提供了一个灵活、高效的RAG解决方案。随着项目的不断发展和社区的贡献,我们可以期待看到更多基于GraphRAG Local Ollama的创新应用出现,推动自然语言处理和人工智能技术的进步。
无论您是对RAG技术感兴趣的研究者,还是寻求高效知识管理解决方案的开发者,GraphRAG Local Ollama都值得一试。它不仅能帮助您更好地理解和利用大规模文本数据,还能为您的项目带来新的思路和可能性。让我们一起探索GraphRAG Local Ollama的潜力,共同推动知识图谱和自然语言处理技术的发展!
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号