HRDA: 一种高分辨率域自适应语义分割方法

RayRay
HRDA语义分割域适应高分辨率多尺度Github开源项目

HRDA:高分辨率域自适应语义分割的突破性进展

在计算机视觉领域,语义分割一直是一个充满挑战的任务。尤其是在无监督域适应(UDA)场景下,如何将在合成数据上训练的模型迁移到真实世界数据上,更是难上加难。近日,来自ETH Zurich的研究团队提出了一种名为HRDA(High-Resolution Domain-Adaptive)的新方法,在UDA语义分割任务上取得了突破性进展。

HRDA的核心思想

HRDA的核心创新在于其独特的多分辨率训练策略。传统的UDA方法通常只在缩小尺寸的低分辨率图像上操作,这虽然可以减少GPU内存占用,但往往会丢失细节信息。HRDA巧妙地结合了两种不同的裁剪策略:

  1. 高分辨率小尺寸裁剪:保留精细的分割细节
  2. 低分辨率大尺寸裁剪:捕获长程上下文依赖关系

通过学习一个尺度注意力机制,HRDA能够自适应地融合这两种尺度的信息,在保持可控GPU内存占用的同时,实现了细节和上下文的平衡。

HRDA概览

显著的性能提升

HRDA在多个UDA语义分割基准上都取得了显著的性能提升:

  • GTA→Cityscapes:提升5.5 mIoU,达到73.8 mIoU
  • Synthia→Cityscapes:提升4.9 mIoU,达到65.8 mIoU

这些结果代表了当前UDA语义分割任务的最高水平。

UDA性能对比

更精细的分割效果

相比之前的方法,HRDA能够更好地保留小物体和细节信息。下面的动图展示了HRDA相较于之前最先进的DAFormer方法在Cityscapes验证集上的分割效果对比:

HRDA演示

我们可以清晰地看到,HRDA在道路、人行道、建筑物等细节的分割上都有明显优势。

扩展到域泛化

除了UDA任务,HRDA还可以扩展应用到域泛化(Domain Generalization, DG)场景。在这种情况下,模型在训练时不需要访问目标域图像,直接在多个真实街景数据集上进行测试。结果显示,HRDA在DG任务上也显著优于现有方法,平均提升4.2 mIoU。

技术细节

HRDA的核心组件包括:

  1. 多分辨率编码器:同时处理高分辨率和低分辨率输入
  2. HRDA解码头:融合多分辨率特征并应用尺度注意力
  3. DAFormer自训练策略:进一步提升域适应性能

整个框架基于MMSegmentation实现,主要代码文件包括:

  • mmseg/models/segmentors/hrda_encoder_decoder.py: HRDA多分辨率编码实现
  • mmseg/models/decode_heads/hrda_head.py: HRDA解码头实现
  • mmseg/models/uda/dacs.py: DAFormer自训练策略实现

实验设置与复现

研究团队提供了详细的实验设置和复现指南。主要步骤包括:

  1. 环境配置:使用Python 3.8.5,安装相关依赖
  2. 数据集准备:包括Cityscapes、GTA、Synthia等
  3. 预训练模型下载:MiT-B5 ImageNet权重
  4. 训练与测试:提供了多个预训练检查点和相应的配置文件

感兴趣的读者可以参考GitHub仓库获取完整的代码和使用说明。

未来展望

HRDA的成功为UDA语义分割开辟了新的研究方向。未来可能的发展包括:

  1. 进一步优化多分辨率训练策略
  2. 探索更高效的注意力机制
  3. 将HRDA应用到其他计算机视觉任务
  4. 研究如何在更多样化的域之间实现自适应

总的来说,HRDA代表了UDA语义分割领域的一个重要突破,为解决真实世界中的复杂视觉任务提供了新的思路和工具。随着这一技术的不断发展和完善,我们有理由期待它在自动驾驶、机器人视觉等领域带来更多实际应用。

参考文献

  1. Hoyer, L., Dai, D., & Van Gool, L. (2022). HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 372-391).

  2. Hoyer, L., Dai, D., & Van Gool, L. (2024). Domain Adaptive and Generalizable Network Architectures and Training Strategies for Semantic Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 46(1), 220-235.

  3. Vu, T. H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2517-2526).

  4. Yang, Y., & Soatto, S. (2020). FDA: Fourier domain adaptation for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4085-4095).

  5. Tranheden, W., Olsson, V., Pinto, J., & Svensson, L. (2021). DACS: Domain adaptation via cross-domain mixed sampling. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1379-1389).

通过这些突破性的研究,HRDA为计算机视觉领域带来了新的可能性,也为未来更多创新性工作铺平了道路。随着技术的不断进步,我们可以期待看到更多令人兴奋的应用在各个领域涌现。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多