HugNLP: 基于HuggingFace Transformer的统一全面NLP库

RayRay
HugNLPNLP预训练语言模型指令微调应用开发Github开源项目

HugNLP: 拥抱自然语言处理的新时代

在自然语言处理(NLP)技术日新月异的今天,研究人员和开发者们不断追求更高效、更全面的工具来推动这一领域的发展。HugNLP应运而生,它是一个基于HuggingFace Transformer的统一、全面的NLP库,为NLP研究人员提供了一个强大而便捷的平台。本文将深入探讨HugNLP的特点、架构以及它在NLP领域带来的革新。

HugNLP的诞生与发展

HugNLP由Jianing Wang创立并主导开发,与Nuo Chen和Qiushi Sun等人合作完成。这个项目的目标是在HuggingFace的基础上,构建一个更加便利和高效的NLP开发和应用库。HugNLP的创新性和实用性得到了学术界的认可,其相关论文已被CIKM 2023会议接收(Demo Track)。

HugNLP Logo

HugNLP的核心架构

HugNLP的框架概览如下图所示:

HugNLP架构图

HugNLP的架构主要包括三个核心部分:模型(Models)、处理器(Processors)和应用(Applications)。

  1. 模型(Models): HugNLP提供了多种流行的基于Transformer的模型作为骨干网络,如BERT、RoBERTa、GPT-2等。此外,还实现了一些特定任务的模型,涵盖了序列分类、匹配、标注、跨度提取、多选和文本生成等任务。值得注意的是,HugNLP开发了基于CLS Head的标准微调和基于提示的微调模型,使得预训练语言模型能够在分类任务上进行调优。

  2. 处理器(Processors): 处理器的主要目的是加载数据集并处理任务示例,包括句子分词、采样和张量生成等流程。用户可以通过load_dataset直接获取数据,无论是从互联网下载还是从本地磁盘加载。对于不同的任务,用户需要定义特定的数据整理器,将原始示例转换为模型输入的张量特征。

  3. 应用(Applications): HugNLP为用户提供了丰富的模块,通过选择模型和处理器中的各种设置,可以轻松构建实际应用和产品。

HugNLP的核心能力

HugNLP提供了多项核心能力,支持各种NLP下游应用:

  1. 知识增强的预训练语言模型: 传统的预训练方法缺乏事实知识。为解决这个问题,HugNLP提出了KP-PLM,一种新颖的知识提示范式,用于知识增强预训练。具体来说,通过识别实体并与知识库对齐,为每个输入文本构建知识子图,然后将这个子图分解为多个关系路径,这些路径可以直接转换为语言提示。

  2. 基于提示的微调: HugNLP集成了一些新颖的方法,如PET、P-tuning等,这些方法旨在重用预训练目标(如掩码语言建模、因果语言建模),并利用精心设计的模板和词汇器进行预测,在低资源设置中取得了巨大成功。

  3. 指令调优与上下文学习: HugNLP支持指令调优和上下文学习,使得少样本/零样本学习无需参数更新即可实现。这种方法旨在连接任务感知指令或基于示例的演示,以提示GPT风格的预训练语言模型生成可靠的响应。所有NLP任务都可以统一为相同的格式,从而大大提高模型的泛化能力。

  4. 基于不确定性估计的自训练: HugNLP提出了基于不确定性的自训练方法。具体来说,在少量标记数据上训练教师模型,然后使用贝叶斯神经网络(BNN)中的蒙特卡洛(MC)dropout技术来近似模型确定性,谨慎选择教师模型确定性较高的样本。

  5. 参数高效学习: 为了提高HugNLP的训练效率,项目实现了参数高效学习,旨在冻结骨干网络中的一些参数,使得在模型训练过程中只调整少量参数。HugNLP开发了一些新颖的参数高效学习方法,如Prefix-tuning、Adapter-tuning、BitFit和LoRA等。

HugNLP的应用场景

HugNLP为各种NLP任务提供了预构建的应用,包括但不限于:

  1. 文本分类:支持标准微调和基于提示的微调,适用于各种分类任务。
  2. 序列标注:如命名实体识别(NER)等任务。
  3. 信息抽取:提供HugIE API和相应的训练脚本,可用于中文数据的信息抽取。
  4. 代码克隆检测和缺陷任务:支持用户自定义数据集的克隆和缺陷训练。
  5. 指令调优和上下文学习:支持GPT风格的上下文学习,用于序列分类等任务。
  6. 生成式指令调优:可以训练小规模的ChatGPT类模型。

HugNLP的安装与使用

要开始使用HugNLP,您可以按照以下步骤进行安装:

git clone https://github.com/wjn1996/HugNLP.git cd HugNLP python3 setup.py install

值得注意的是,该项目仍在持续开发和改进中,可能存在一些使用中的"bug",开发团队欢迎用户提出问题或提交有价值的拉取请求。

结语

HugNLP作为一个统一、全面的NLP库,为研究人员和开发者提供了强大的工具和丰富的功能。通过集成最新的NLP技术和方法,HugNLP不仅简化了NLP任务的开发流程,还为探索新的研究方向提供了便利。随着项目的不断发展和完善,相信HugNLP将在推动NLP技术进步和应用创新方面发挥越来越重要的作用。

无论您是NLP研究人员、学生还是行业从业者,HugNLP都值得您深入探索和使用。让我们一起拥抱HugNLP,开启NLP研究和应用的新篇章!

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多