在计算机视觉和图形学领域,精确地重建和渲染人体一直是一个具有挑战性的任务。近日,苹果公司推出的HUGS (Human Gaussian Splats) 技术为这一领域带来了革命性的突破。本文将深入探讨HUGS技术的核心理念、实现方法以及其在人体渲染领域的重要意义。
HUGS是一种创新的神经辐射场技术,能够从单个视频中同时重建背景场景和可动画化的人体。这项技术由苹果公司的研究团队开发,并将在2024年IEEE计算机视觉与模式识别会议(CVPR 2024)上正式发表。
上图展示了HUGS技术的惊人效果:一个人在房间中跳舞,系统能够精确捕捉人体动作和场景细节。
HUGS的核心创新在于其结合了高斯分布渲染和神经辐射场技术。这种方法不仅能够高效地渲染复杂的3D场景,还能实现人体的精确建模和动画化。以下是HUGS技术的几个关键特点:
联合优化:HUGS同时优化人体高斯分布和场景高斯分布,实现了更加一致和真实的渲染效果。
Triplane+MLP模型:这种创新的模型结构使得HUGS能够更好地捕捉人体的细节和动态特征。
单视频输入:仅需一个视频序列,HUGS就能重建完整的3D场景和可动画化的人体模型。
高效渲染:采用高斯分布渲染技术,HUGS在保证高质量输出的同时,大大提高了渲染效率。
HUGS的实现基于多个开源项目和数据集,包括:
研究团队提供了详细的安装和使用指南,使得其他研究者和开发者能够轻松复现和扩展HUGS技术。
HUGS的训练过程分为三种模式:
这种灵活的训练策略使得HUGS能够适应不同的应用场景和研究需求。
# 联合人体和场景训练示例 python main.py --cfg_file cfg_files/release/neuman/hugs_human_scene.yaml dataset.seq=lab
HUGS不仅能够高质量地重建3D场景和人体模型,还提供了全面的评估指标和动画生成功能。研究者可以使用PSNR、SSIM和LPIPS等指标来量化HUGS的渲染质量。
# 评估示例 python scripts/evaluate.py -o <<path to the output directory>>
HUGS技术的出现为多个领域带来了新的可能性:
虚拟现实(VR)和增强现实(AR):HUGS可以为VR/AR应用提供更真实、更流畅的人体渲染效果。
电影特效:电影制作可以利用HUGS技术创建更加逼真的数字角色和场景。
游戏开发:游戏开发者可以使用HUGS来提升游戏中人物角色的真实感和动画质量。
医疗影像:在医疗领域,HUGS可能被用于改进人体3D成像技术。
时尚和电子商务:虚拟试衣和产品展示可以借助HUGS技术变得更加逼真和互动。
尽管HUGS已经展现出了令人印象深刻的性能,但这项技术仍有巨大的发展潜力:
实时渲染:未来的研究可能会致力于提高HUGS的渲染速度,实现实时的高质量人体渲染。
多人场景:扩展HUGS以支持多人场景的重建和渲染将是一个有趣的研究方向。
与其他技术的集成:将HUGS与其他先进的计算机视觉和图形学技术结合,可能会产生更加强大的应用。
移动端优化:考虑到苹果公司的背景,我们可以期待HUGS技术在移动设备上的优化和应用。
开源社区贡献:随着HUGS代码的开源,来自全球开发者的贡献可能会进一步推动这项技术的发展。
HUGS技术的出现无疑是计算机视觉和图形学领域的一个重要里程碑。它不仅展示了苹果公司在人工智能和计算机图形学方面的研究实力,也为整个行业指明了新的发展方向。随着这项技术的不断完善和推广,我们可以期待在不久的将来,更多令人惊叹的应用会涌现出来,彻底改变我们与数字世界交互的方式。
HUGS项目的GitHub仓库(https://github.com/apple/ml-hugs)为研究者和开发者提供了宝贵的资源。我们鼓励对这一领域感兴趣的读者深入探索HUGS的代码和文档,参与到这项激动人心的技术发展中来。
让我们共同期待HUGS技术带来的更多惊喜,见证计算机视觉和图形学领域的新篇章!🚀🎉
参考文献:
Kocabas, M., Chang, J. R., Gabriel, J., Tuzel, O., & Ranjan, A. (2024). HUGS: Human Gaussian Splatting. arXiv preprint arXiv:2311.17910.
HUGS GitHub Repository: https://github.com/apple/ml-hugs
Apple Machine Learning Research: https://machinelearning.apple.com/research/hugs
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速 形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整 理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号