生成式推荐系统的革新:基于HSTU架构的万亿参数顺序转换器

RayRay
推荐系统深度学习HSTU序列模型性能基准Github开源项目

generative-recommenders

生成式推荐系统的新纪元

随着人工智能技术的不断进步,推荐系统正在经历一场革命性的变革。传统的推荐算法主要依赖用户-物品交互历史,而新兴的生成式模型则为推荐系统带来了全新的可能性。近日,Facebook Research团队提出的"Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations"(以下简称HSTU)项目,展示了生成式模型在推荐系统领域的巨大潜力。

HSTU架构:万亿参数的顺序转换器

HSTU是一种基于顺序转换器的生成式推荐模型,其核心特征是采用了万亿级参数规模。与传统的双编码器模型不同,HSTU采用单阶段范式,通过自回归方式直接解码目标候选项的标识符。这种创新性的设计使得HSTU能够更有效地捕捉用户行为序列中的复杂模式,从而生成更精准的推荐结果。

HSTU架构图

实验结果:显著超越现有方法

HSTU在多个公开数据集上的实验结果令人瞩目。以下是在MovieLens-1M、MovieLens-20M和亚马逊图书评论数据集上的部分实验结果:

MovieLens-1M (ML-1M):

方法HR@10NDCG@10HR@50NDCG@50HR@200NDCG@200
SASRec0.28530.16030.54740.21850.75280.2498
HSTU0.3097 (+8.6%)0.1720 (+7.3%)0.5754 (+5.1%)0.2307 (+5.6%)0.7716 (+2.5%)0.2606 (+4.3%)
HSTU-large0.3294 (+15.5%)0.1893 (+18.1%)0.5935 (+8.4%)0.2481 (+13.5%)0.7839 (+4.1%)0.2771 (+10.9%)

从表中可以看出,HSTU-large在所有评估指标上都显著优于基准模型SASRec,HR@10和NDCG@10分别提升了15.5%和18.1%。这一结果充分证明了HSTU在捕捉用户兴趣和生成精准推荐方面的卓越能力。

技术创新:语义ID和自回归生成

HSTU的核心创新之一是引入了"语义ID"概念。不同于传统方法使用随机生成的原子ID,HSTU为每个物品分配一个语义上有意义的代码词元组作为其唯一标识符。这种设计使得模型能够更好地理解物品之间的语义关系,从而生成更加个性化和相关的推荐。

另一个重要创新是采用自回归方式直接预测下一个物品的语义ID。这种端到端的生成式方法避免了传统两阶段检索过程中的信息损失,能够更准确地捕捉用户兴趣的动态变化。

开源与可复现性

为了促进学术交流和技术进步,Facebook Research团队已将HSTU项目的核心代码开源。研究者可以通过GitHub仓库获取代码,并按照详细的说明复现论文中的实验结果。这种开放的态度不仅有助于验证研究成果的可靠性,也为整个推荐系统社区提供了宝贵的学习资源。

GitHub仓库截图

未来展望:生成式推荐的广阔前景

HSTU的成功为生成式推荐系统开辟了新的研究方向。未来,我们可以期待在以下几个方面看到更多创新:

  1. 多模态融合:将文本、图像、视频等多种形式的信息整合到生成式推荐模型中。

  2. 可解释性增强:开发能够生成推荐理由的模型,提高用户对推荐结果的理解和信任。

  3. 个性化对话推荐:结合大型语言模型的强大对话能力,实现更自然、更个性化的推荐交互。

  4. 隐私保护:探索如何在保护用户隐私的前提下,充分利用生成式模型的优势。

  5. 计算效率优化:研究如何在保持模型性能的同时,降低计算资源需求,使生成式推荐更加适用于工业场景。

结语

HSTU项目的成功标志着生成式推荐系统研究进入了一个新的阶段。通过将深度学习、自然语言处理和推荐系统的最新进展相结合,HSTU为个性化推荐提供了更强大、更灵活的解决方案。随着这一领域的不断发展,我们有理由相信,生成式推荐系统将在未来彻底改变用户的在线体验,为信息获取和决策提供更智能、更人性化的支持。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多