近年来,3D点云实例分割作为一项重要的计算机视觉任务,在自动驾驶、机器人等领域有着广泛的应用前景。然而,现有的3D实例分割方法大多采用自下而上的设计:先通过人工调优的算法将点云分组成簇,然后用一个细化网络进行优化。这种方法过度依赖簇的质量,在以下两种情况下容易产生不稳定的结果:(1)相同语义类别的相邻物体紧密排列在一起;(2)形状复杂的大型物体。
为了解决这些问题,来自越南VinAI研究院的研究人员提出了ISBNet(Instance-aware Selective Branching Network),这是一种新颖的无簇方法,通过将实例表示为核并通过动态卷积解码实例掩码来实现高效准确的3D点云实例分割。ISBNet的核心创新点包括:
实例感知最远点采样(Instance-aware Farthest Point Sampling, IFPS):一种简单而有效的策略,用于高效生成高召回率和判别性的核集。
框感知动态卷积:利用额外的轴对齐边界框预测头来进一步提升性能。
多任务学习框架:将3D实例分割与边界框预测结合,实现性能的进一步提升。
ISBNet的整体架构如下图所示:
主要包括以下几个关键模块:
骨干网络:使用稀疏卷积网络提取点云的多尺度特征。
实例感知采样模块:采用IFPS策略选择候选点,并利用PointNet++中的点聚合层编码候选特征。
动态卷积模块:通过动态生成的卷积核解码实例掩码。
多任务预测头:包括实例分割头和边界框预测头。
传统的最远点采样(FPS)方 法仅考虑点的3D坐标,忽略了语义信息。ISBNet提出的IFPS策略不仅考虑点的空间分布,还考虑点的语义特征,从而能够更好地采样出代表性的实例候选点。具体来说,IFPS在采样过程中结合了点的3D坐标和语义特征,通过计算点之间的加权距离来选择最远点。这种方法能够更好地覆盖场景中的不同实例,提高采样的多样性和代表性。
ISBNet引入了框感知动态卷积,通过预测每个实例的轴对齐边界框来辅助实例分割。具体而言,网络额外添加了一个边界框预测头,与实例分割头并行。边界框信息被用于指导动态卷积核的生成,使得卷积操作能够更好地适应不同实例的形状和尺寸。这种设计使得网络能够更准确地捕捉实例的几何特征,从而提高分割性能。
ISBNet采用多任务学习的方式,同时优化实例分割和边界框预测两个任务。这种设计不仅能够提高网络的泛化能力,还能够利用两个任务之间的互补性来提升整体性能。实验结果表明,多任务学习框架相比单任务学习能够显著提高分割精度。
ISBNet在多个具有挑战性的3D点云实例分割数据集上进行了广泛的评估,包括ScanNetV2、S3DIS和STPLS3D。实验结果表明,ISBNet在各项指标上均达到了最先进的性能:
ScanNetV2数据集:
S3DIS数据集(Area 5):
STPLS3D数据集:
值得注意的是,ISBNet不仅在精度上表现出色,在推理速度方面也保持了较高的效率。在ScanNetV2数据集上,ISBNet的平均推理时间仅为237ms每个场景,这对于实时应用具有重要意义。
ISBNet作为一种新颖的3D点云实例分割方法,通过实例感知采样和框感知动态卷积成功解决了现有方法面临的挑战。其在多个benchmark数据集上的出色表现证明了该方法的有效性和泛化能力。未来的研究方向可能包括:
总的来说,ISBNet为3D点云实例分割任务提供了一种高效且准确的解决方案,为相关领域的研究和应用开辟了新的方向。随着3D视觉技术的不断发展,我们可以期待看到更多基于ISBNet的创新应用和改进方法。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提 供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各 类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号