ISBNet: 一种高效的3D点云实例分割网络

RayRay
3D点云实例分割ISBNet深度学习计算机视觉Github开源项目

ISBNet: 一种高效的3D点云实例分割网络

近年来,3D点云实例分割作为一项重要的计算机视觉任务,在自动驾驶、机器人等领域有着广泛的应用前景。然而,现有的3D实例分割方法大多采用自下而上的设计:先通过人工调优的算法将点云分组成簇,然后用一个细化网络进行优化。这种方法过度依赖簇的质量,在以下两种情况下容易产生不稳定的结果:(1)相同语义类别的相邻物体紧密排列在一起;(2)形状复杂的大型物体。

为了解决这些问题,来自越南VinAI研究院的研究人员提出了ISBNet(Instance-aware Selective Branching Network),这是一种新颖的无簇方法,通过将实例表示为核并通过动态卷积解码实例掩码来实现高效准确的3D点云实例分割。ISBNet的核心创新点包括:

  1. 实例感知最远点采样(Instance-aware Farthest Point Sampling, IFPS):一种简单而有效的策略,用于高效生成高召回率和判别性的核集。

  2. 框感知动态卷积:利用额外的轴对齐边界框预测头来进一步提升性能。

  3. 多任务学习框架:将3D实例分割与边界框预测结合,实现性能的进一步提升。

网络架构

ISBNet的整体架构如下图所示:

ISBNet architecture

主要包括以下几个关键模块:

  1. 骨干网络:使用稀疏卷积网络提取点云的多尺度特征。

  2. 实例感知采样模块:采用IFPS策略选择候选点,并利用PointNet++中的点聚合层编码候选特征。

  3. 动态卷积模块:通过动态生成的卷积核解码实例掩码。

  4. 多任务预测头:包括实例分割头和边界框预测头。

主要创新点

  1. 实例感知最远点采样(IFPS)

传统的最远点采样(FPS)方法仅考虑点的3D坐标,忽略了语义信息。ISBNet提出的IFPS策略不仅考虑点的空间分布,还考虑点的语义特征,从而能够更好地采样出代表性的实例候选点。具体来说,IFPS在采样过程中结合了点的3D坐标和语义特征,通过计算点之间的加权距离来选择最远点。这种方法能够更好地覆盖场景中的不同实例,提高采样的多样性和代表性。

  1. 框感知动态卷积

ISBNet引入了框感知动态卷积,通过预测每个实例的轴对齐边界框来辅助实例分割。具体而言,网络额外添加了一个边界框预测头,与实例分割头并行。边界框信息被用于指导动态卷积核的生成,使得卷积操作能够更好地适应不同实例的形状和尺寸。这种设计使得网络能够更准确地捕捉实例的几何特征,从而提高分割性能。

  1. 多任务学习框架

ISBNet采用多任务学习的方式,同时优化实例分割和边界框预测两个任务。这种设计不仅能够提高网络的泛化能力,还能够利用两个任务之间的互补性来提升整体性能。实验结果表明,多任务学习框架相比单任务学习能够显著提高分割精度。

实验结果

ISBNet在多个具有挑战性的3D点云实例分割数据集上进行了广泛的评估,包括ScanNetV2、S3DIS和STPLS3D。实验结果表明,ISBNet在各项指标上均达到了最先进的性能:

  1. ScanNetV2数据集:

    • 测试集: AP 55.9%, AP_50 76.3%
    • 验证集: AP 56.8%, AP_50 73.3%
  2. S3DIS数据集(Area 5):

    • AP 56.3%, AP_50 67.5%
  3. STPLS3D数据集:

    • 验证集: AP 51.2%, AP_50 66.7%

值得注意的是,ISBNet不仅在精度上表现出色,在推理速度方面也保持了较高的效率。在ScanNetV2数据集上,ISBNet的平均推理时间仅为237ms每个场景,这对于实时应用具有重要意义。

结论与展望

ISBNet作为一种新颖的3D点云实例分割方法,通过实例感知采样和框感知动态卷积成功解决了现有方法面临的挑战。其在多个benchmark数据集上的出色表现证明了该方法的有效性和泛化能力。未来的研究方向可能包括:

  1. 进一步优化网络结构,提高计算效率。
  2. 探索更多的多任务学习策略,如结合语义分割、场景理解等任务。
  3. 将ISBNet应用于更多实际场景,如自动驾驶、机器人导航等领域。

总的来说,ISBNet为3D点云实例分割任务提供了一种高效且准确的解决方案,为相关领域的研究和应用开辟了新的方向。随着3D视觉技术的不断发展,我们可以期待看到更多基于ISBNet的创新应用和改进方法。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多