kumo-search: 开箱即用的端到端搜索引擎框架

RayRay
搜索引擎端到端搜索EA平台向量检索kumo searchGithub开源项目

kumo-search: 打造现代化的搜索引擎框架

在当今数字时代,搜索引擎已经成为人们获取信息的重要途径。不仅仅是全网搜索,许多垂直领域如电商、社交、新闻等都需要强大的搜索功能来支撑业务发展。然而,开发一个高性能、可扩展的搜索引擎系统并非易事,需要大量的工程和算法支持。为了解决这一难题,kumo-search应运而生。

kumo-search是一个功能丰富、开箱即用的端到端搜索引擎框架,旨在帮助用户快速构建自己的搜索系统。它不仅提供了全面的搜索功能,还支持在EA(Elastic Automic Infrastructure Architecture)平台上实现工程自动化、服务治理等高级特性。让我们深入了解这个强大的搜索引擎框架。

kumo-search的核心特性

  1. 全面的搜索功能

kumo-search支持全文检索、倒排索引、正排索引、排序、缓存、索引分层等基本搜索功能,同时还提供了干预系统、特征收集、离线计算、存储系统等高级功能。这些功能的集成使得kumo-search能够满足各种复杂的搜索需求。

  1. EA平台支持

kumo-search运行在EA平台之上,这使得它能够在多机房、多集群环境中实现:

  • 工程自动化:简化部署和运维流程
  • 服务治理:统一管理和监控服务
  • 实时数据:支持数据的实时处理和更新
  • 服务降级与容灾:保证系统的高可用性
  1. 快速迭代能力

kumo-search内置了AOT(Ahead-Of-Time)编译器,用户可以使用Python编写业务逻辑,框架会自动生成C++代码并编译成动态库。这种设计允许搜索引擎能够动态更新,极大地提高了开发效率和系统的灵活性。

  1. 丰富的项目生态

kumo-search不是孤立的系统,它拥有一个完整的项目生态。这些项目涵盖了基础库、服务组件、开发工具等多个方面,为搜索引擎的开发和运维提供了全方位的支持。

kumo search logo

kumo-search的技术架构

kumo-search的技术架构可以分为以下几个层次:

  1. 基础库层

    • collie: 引用外部header only library
    • turbo: 提供hash、log、容器类、字符串操作等基础功能
    • melon: 负责RPC通信
    • alkaid: 封装文件系统操作,支持本地文件、HDFS、S3等
    • mizar: 基于RocksDB、ToplingDB的存储引擎内核
  2. 核心功能层

    • alioth(玉衡): 表格内存管理
    • megrez(天权): 数据集读写
    • phekda: 统一向量引擎访问API
    • merak(天璇): 综合搜索引擎内核
    • dubhe(天枢): NLP内核
    • flare: GPU、CPU高维张量计算
  3. 工具与应用层

    • theia: 基于OpenGL的图形图像显示
    • dwarf: Jupyter协议C++内核
    • exodus: Jupyter应用
    • hercules: Python AOT编译器
    • carbin: C++包管理器和CMake生成器
  4. 服务层

    • sirius: EA元数据服务器
    • polaris: 向量引擎单机服务
    • elnath: 综合搜索引擎单机服务
    • vega: 向量引擎数据库集群版
    • arcturus: 综合搜索引擎集群版
    • pollux: 综合引擎业务控制台
    • capella: LTR排序服务
    • aldebaran: 搜索建议服务集群
    • nunki: NLP服务

快速上手kumo-search

为了帮助开发者快速上手kumo-search,项目提供了一系列"半小时系列"教程:

  1. 基础环境搭建与项目创建
  2. C++应用开发与库的使用
  3. 单元测试的编写
  4. RESTful服务的创建
  5. Echo服务的实现
  6. 带浏览器界面的缓存服务开发
  7. 单机KV服务的完整实现
  8. 分布式KV服务的开发

这些教程循序渐进,让开发者能够快速掌握kumo-search的核心概念和使用方法。

kumo-search的应用场景

kumo-search适用于多种垂直领域的搜索需求,例如:

  1. 电商平台: 商品搜索、个性化推荐
  2. 社交网络: 用户搜索、内容检索
  3. 新闻媒体: 文章搜索、实时热点发现
  4. 企业内部系统: 文档搜索、知识管理
  5. 在线教育: 课程搜索、学习资源检索

通过kumo-search,这些领域可以快速构建出性能优异、功能丰富的搜索系统,提升用户体验和业务效率。

走进AI: 向量检索

随着AI技术的发展,向量检索成为了现代搜索引擎的重要组成部分。kumo-search在这方面也有深入的探索和实践。

向量检索的基本原理是将文本、图像等数据转换为高维向量,然后通过计算向量之间的相似度来实现检索。这种方法在处理语义相似性、跨模态搜索等场景时表现出色。

kumo-search提供了完整的向量检索解决方案:

  1. 向量生成: 利用深度学习模型将原始数据转换为向量表示
  2. 索引构建: 使用高效的索引结构(如HNSW)来组织向量数据
  3. 相似度计算: 支持多种相似度度量方法,如余弦相似度、欧氏距离等
  4. 检索优化: 通过量化、聚类等技术提高检索效率

通过这些技术,kumo-search能够为用户提供更加智能和精准的搜索体验。

技术深度探索

为了帮助开发者更好地理解和使用kumo-search,项目提供了一系列技术专题文章:

  1. CMake构建系统: 详细介绍如何利用CMake进行工程编译、部署和CI/CD自动化。
  2. 向量检索技术: 深入探讨向量检索的原理、算法和在kumo-search中的实现。

这些技术专题不仅涵盖了kumo-search的具体实现细节,还包含了搜索引擎领域的前沿技术和最佳实践,是开发者提升技术水平的宝贵资源。

开发者社区与支持

kumo-search拥有活跃的开发者社区,为用户提供多方面的支持:

  1. 详细的文档: 包括安装指南、开发教程、API参考等
  2. 示例代码: 提供多个实际应用场景的示例项目
  3. 技术讨论: 通过GitHub Issues和讨论区解答用户疑问
  4. 定期更新: 持续改进功能,修复bug,保持与最新技术同步

开发者可以通过以下方式参与到kumo-search的生态中:

  • Star和Watch项目,及时获取最新更新
  • 提交Issue报告bug或提出新功能建议
  • 贡献代码,参与项目的开发和维护
  • 分享使用经验,帮助其他开发者解决问题

结语

kumo-search作为一个全面而强大的搜索引擎框架,为开发者提供了构建现代化搜索系统的完整解决方案。它不仅包含了丰富的功能和先进的技术,还拥有活跃的社区支持和持续的更新迭代。无论是构建小型的垂直搜索系统,还是开发大规模的分布式搜索引擎,kumo-search都能够满足各种复杂的需求。

随着AI技术的不断发展,搜索引擎的智能化程度将不断提升。kumo-search团队也将持续关注行业动态,融合最新的AI技术,为用户提供更加智能、高效的搜索解决方案。相信在不久的将来,kumo-search将在更多的领域发挥重要作用,为用户创造更大的价值。

如果您对构建下一代搜索引擎感兴趣,不妨深入探索kumo-search,相信它会为您的项目带来全新的可能性。让我们一起,用科技的力量,让信息检索变得更加便捷、精准和智能!

kumo search demo

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多