LITv2: 快速视觉Transformer与HiLo注意力机制

RayRay
LITv2HiLo注意力视觉Transformer图像分类目标检测Github开源项目

LITv2: 快速视觉Transformer的新突破

在计算机视觉领域,Transformer模型凭借其强大的特征提取和建模能力,正在逐步取代传统的卷积神经网络。然而,标准Transformer模型计算复杂度高、推理速度慢的问题一直是其广泛应用的瓶颈。为了解决这一问题,来自澳大利亚莫纳什大学的研究团队提出了LITv2(Less is More Transformer v2)模型,通过创新的HiLo注意力机制,在保持高精度的同时大幅提升了模型的推理速度。

HiLo注意力机制: LITv2的核心创新

LITv2的核心创新在于其提出的HiLo(High-Low)注意力机制。这一机制的设计灵感来自于图像中高频和低频信息的不同特性:

  • 高频信息捕捉局部细节
  • 低频信息关注全局结构

传统的多头自注意力机制忽略了不同频率特征的这一特性。因此,HiLo注意力将注意力头分为两组:

  1. 高频组: 在每个局部窗口内进行自注意力计算,编码高频局部细节。
  2. 低频组: 对每个窗口的平均池化低频键进行注意力计算,建模全局关系。

通过这种设计,LITv2能够更有效地处理不同尺度的图像信息,在提高精度的同时降低计算复杂度。

HiLo注意力机制示意图

LITv2的模型架构

LITv2采用了类似ViT(Vision Transformer)的整体架构,但在每个Transformer块中使用HiLo注意力代替了标准的多头自注意力。具体来说,LITv2的架构包括:

  1. Patch Embedding: 将输入图像划分为固定大小的patch并进行线性投影
  2. 多个Transformer块:
    • HiLo注意力层
    • 前馈神经网络(FFN)层
    • Layer Normalization
  3. 分类头: 用于最终的预测输出

这种设计使得LITv2能够在保持Transformer强大建模能力的同时,显著提高计算效率。

在多项视觉任务上的卓越表现

研究团队在多个主流视觉任务上评估了LITv2的性能,包括图像分类、目标检测和语义分割。结果表明,LITv2在各种模型规模下都能实现优于现有最先进方法的性能,同时具有更快的推理速度。

图像分类

在ImageNet-1K数据集上,LITv2展现了出色的分类性能:

模型参数量(M)FLOPs(G)吞吐量(imgs/s)Top-1准确率(%)
LITv2-S283.71,47182.0
LITv2-M497.581283.3
LITv2-B8713.260283.6

值得注意的是,LITv2-S模型在仅有28M参数的情况下,就达到了82.0%的Top-1准确率,展现了极高的参数效率。

目标检测

研究团队还在COCO 2017数据集上评估了LITv2在目标检测任务上的性能。以RetinaNet为检测器,LITv2作为骨干网络,在1x训练调度(12个epoch)下取得了如下结果:

骨干网络窗口大小参数量(M)FLOPs(G)FPSbox AP
LITv2-S23824218.744.0
LITv2-M25934812.246.0
LITv2-B2974819.546.7

这些结果表明,LITv2不仅在分类任务上表现出色,在目标检测这样的下游任务中同样能够取得competitive的性能。

语义分割

在ADE20K数据集上的语义分割任务中,LITv2同样展现了强大的性能:

骨干网络参数量(M)FLOPs(G)FPSmIoU
LITv2-S314142.644.3
LITv2-M526328.545.7
LITv2-B909327.547.2

这进一步证明了LITv2作为通用视觉骨干网络的潜力,能够在多种视觉任务中提供出色的特征表示。

与其他模型的性能对比

为了更全面地评估LITv2的性能,研究团队将其与多个主流的视觉Transformer和CNN模型进行了对比。在相似的参数量和计算复杂度下,LITv2-S模型展现出了最佳的性能-效率权衡:

模型参数量(M)FLOPs(G)RTX 3090吞吐量(imgs/s)Top-1准确率(%)
ResNet-50264.11,27980.4
Swin-Ti284.596181.3
ConvNext-Ti284.51,07982.1
LITv2-S283.71,47182.0

可以看到,LITv2-S在参数量和计算量都较低的情况下,实现了最快的推理速度和competitive的分类准确率。这充分证明了HiLo注意力机制在提升模型效率方面的有效性。

LITv2的实际应用与部署

得益于其出色的性能和效率,LITv2在多个实际应用场景中展现了巨大潜力:

  1. 移动设备上的视觉应用: LITv2-S模型小巧高效,非常适合部署在计算资源有限的移动设备上。

  2. 大规模视频分析: 在视频监控、自动驾驶等需要实时处理大量视频流的场景中,LITv2的高效率可以显著提升系统的整体性能。

  3. 医学图像分析: LITv2在语义分割任务上的出色表现,使其成为医学图像分割(如器官分割、肿瘤检测)的理想选择。

  4. 工业视觉检测: 在工业生产线上的实时缺陷检测等应用中,LITv2可以提供快速准确的视觉分析能力。

为了便于研究者和开发者使用LITv2,项目团队提供了完整的PyTorch实现和预训练模型。此外,他们还支持将LITv2模型转换为ONNX和TensorRT格式,以实现更高效的推理部署。

未来研究方向

尽管LITv2已经在多个方面展现出了优秀的性能,但研究团队认为仍有进一步改进的空间:

  1. 探索更优的α值: α参数控制着高频和低频注意力头的比例,进一步研究最佳的α值可能带来性能的提升。

  2. 动态窗口大小: 目前LITv2使用固定的窗口大小,未来可以探索根据输入动态调整窗口大小的方法。

  3. 跨模态应用: 将HiLo注意力机制扩展到视觉-语言等跨模态任务中,可能带来新的突破。

  4. 硬件加速优化: 针对HiLo注意力机制设计专门的硬件加速方案,进一步提升推理速度。

结论

LITv2通过创新的HiLo注意力机制,成功地在视觉Transformer的精度和效率之间取得了优秀的平衡。它不仅在多个视觉任务上达到了state-of-the-art的性能,还展现出了卓越的推理速度和资源效率。这使得LITv2成为一个非常有前景的通用视觉骨干网络,有望在学术研究和工业应用中发挥重要作用。

随着深度学习技术不断发展,像LITv2这样兼顾性能和效率的模型将会越来越受到关注。我们期待看到更多基于LITv2的创新应用,以及它在推动计算机视觉技术进步方面的贡献。

LITv2架构图

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多