大型语言模型(LLM)在自然语言处理领域展现出了惊人的能力,但其庞大的模型规模也给部署和应用带来了巨大挑战。为了解决这一问题,新加坡国立大学的研究人员提出了一种名为LLM-Pruner的创新方法,旨在通过结构化剪枝来压缩大型语言模型,同时保持其作为多任务求解器的原始能力。
LLM-Pruner的核心思想是采用结构化剪枝,选择性地移除模型中非关键的耦合结构。这种方法不同于传统的参数级剪枝,它能够在保持模型整体结构的同时,大幅减少参数数量和计算复杂度。LLM-Pruner的主要特点包括:
任务无关压缩:压缩后的LLM能够保持其作为多任务求解器的原始能力。
少量训练数据:仅使用5万个公开可用的样本(Alpaca数据集)进行模型微调。
高效压缩:剪枝过程仅需3分钟,微调过程仅需3小时。
自动结构化剪枝:能够以最小的人工干预对新的LLM进行剪枝。
LLM-Pruner的工作流程分为三个主要阶段:
发现阶段:探索LLM中复杂的相互依赖关系,找到最小可移除单元"组"。
估计阶段:评估每个"组"对模型整体性能的贡献,决定要剪枝的"组"。
恢复阶段:通过快速微调恢复模型性能。
LLM-Pruner目前支持多种主流的大型语言模型,包括:
这种广泛的兼容性使得LLM-Pruner能够应用于各种不同的场景和需求。
研究人员对LLaMA-7B模型进行了详细的实验。结果显示,LLM-Pruner能够在保持模型性能的同时,显著减少参数数量和计算资源需求:
从上图可以看出,LLM-Pruner在各项评估指标上都取得了不错的效果。特别是在使用2.59M样本进行微调后,压缩后的LLaMA-5.4B模型在多项任务上的表现甚至接近甚至超过了原始的LLaMA-7B模型。
LLM-Pruner不仅在理论上表现出色,在实际应用中也展现了良好的效果。研究人员提供了一些压缩前后模型输出的对比示例:
原始模型 | 输出 | 压缩模型 | 输出 |
---|---|---|---|
LLaMa-7B | 宇宙是存在的所有空间、时间、物质和能量的总和。它包括所有可见和不可见的物质和能量,事实上整个宇宙是不可见的。关于其起源和最终命运有许多理论... | LLaMa-5.4B | 宇宙是存在的所有空间、时间、物质和能量的总和。构成物理学的定律 — 电子围绕原子运动、磁铁吸引其他物体、行星围绕太阳运转 — 一直保持一致... |
Vicuna-7B | 构建iOS应用的10个步骤:1.研究和开发想法。2.决定你想使用的平台(iOS、Android或两者)。3.制定计划和预算。4.雇佣一个开发团队。5.设计用户界面(UI)。6.开发用户界面(UI)。7.测试和迭代应用程序。8.将应用程序提交到应用商店。9.优化应用程序的性能和用户体验(UX)。10.营销和推广应用程序。 | Vicuna-5.4B | 构建iOS应用的10个步骤:1.规划你的应用:决定它应该做什么,它会是 什么样子,以及构建它需要多少成本。2.雇佣一个开发者:一个优秀的iOS开发者将帮助你设计用户界面,创建应用程序,并确保它没有错误。3.创建用户界面:这是魔法发生的地方。你的应用程序的用户界面将在这一点上被设计和模拟... |
从这些例子中可以看出,虽然压缩后的模型参数量减少了,但仍能生成连贯、有意义的文本,保持了原始模型的核心能力。
尽管LLM-Pruner取得了显著的成果,研究人员也坦承该方法仍存在一些局限性:
虽然目前只使用了5万个数据样本和3小时的训练时间,但更多的数据和更长的训练时间可能会带来更好的效果。
当前压缩后的模型仍存在一些问题,如生成重复的标记或产生无意义的句子。压缩模型的质量还有很大的提升空间。
对于某些模型,仍无法自动识别连接和视图操作后的索引映射,需要额外的手动操作。
研究团队正在积极解决这些问题,并计划在未来的工作中进一步改进LLM-Pruner的性能和适用性。
LLM-Pruner为大型语言模型的压缩提供了一种新的、高效的方法。通过结构化剪枝和少量数据微调,它能够显著减少模型规模,同时保持模型的多任务处理能力。这项技术有望推动大型语言模型在资源受限的环境中的应用,为自然语言处理领域带来新的可能性。
随着研究的深入和技术的不断改进,我们可以期待看到更多基于LLM-Pruner的创新应用,以及更加轻量、高效的大型语言模型在各个领域发挥作用。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换 ,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。