MACE: 面向移动设备的高性能深度学习推理框架

RayRay
MACE深度学习推理框架移动端异构计算TensorFlowONNXGithub开源项目

MACE简介

MACE(Mobile AI Compute Engine)是小米公司开源的一个深度学习推理框架,专门针对移动设备和异构计算平台进行了优化。它的设计目标是在移动设备上实现高性能、低功耗、快速响应的深度学习模型推理。

MACE支持在Android、iOS、Linux和Windows等多个平台上运行,可以充分利用移动设备的CPU、GPU和DSP等异构计算资源。它支持TensorFlow、Caffe和ONNX等主流深度学习模型格式,使得开发者可以方便地将训练好的模型部署到移动设备上。

MACE logo

MACE的主要特性

MACE具有以下几个主要特性:

  1. 高性能

MACE针对移动平台进行了深度优化,充分利用了NEON、OpenCL和Hexagon等硬件加速技术。同时引入了Winograd算法来加速卷积运算,大幅提升了推理速度。

  1. 低功耗

MACE提供了针对不同芯片的电源管理选项,如big.LITTLE调度、Adreno GPU提示等高级API,可以有效降低功耗。

  1. 快速响应

为了保证UI的响应性,MACE引入了自动将OpenCL内核分解为小单元的机制,从而允许UI渲染任务更好地抢占资源。

  1. 内存优化

MACE在图级别进行内存分配优化,并支持缓冲区重用,有效降低了内存占用。

  1. 模型保护

MACE从设计之初就高度重视模型保护,引入了将模型转换为C++代码、字面混淆等多种技术来保护模型安全。

  1. 广泛的平台支持

MACE对高通、联发科、展锐等主流ARM芯片都有很好的支持。CPU运行时支持Android、iOS和Linux等多个平台。

  1. 丰富的模型格式支持

MACE支持TensorFlow、Caffe和ONNX等主流深度学习模型格式,方便开发者快速部署模型。

MACE的架构设计

MACE的整体架构设计如下:

  1. 模型转换层

负责将TensorFlow、Caffe等格式的模型转换为MACE内部的中间表示(IR)。

  1. 图优化层

对模型进行图级别的优化,如算子融合、内存分配优化等。

  1. 运行时层

包括CPU、GPU、DSP等多个后端,负责模型的实际执行。

  1. HAL层

硬件抽象层,屏蔽了不同硬件平台的差异。

  1. 工具链

包括性能分析、模型量化等辅助工具。

MACE的使用方法

使用MACE部署模型的基本流程如下:

  1. 模型转换

使用MACE的模型转换工具将TensorFlow等格式的模型转换为MACE格式。

  1. 编译

使用CMake或Bazel编译MACE库和模型文件。

  1. 集成

将编译好的MACE库和模型文件集成到移动应用中。

  1. 推理

在应用中调用MACE API进行模型推理。

更详细的使用说明可以参考MACE官方文档

MACE的性能表现

MACE在移动平台上展现出了优秀的性能。根据MobileAIBench的测试结果,MACE在多个常见神经网络模型上的推理速度都优于TensorFlow Lite等竞品。

以下是MACE在某款高通骁龙处理器上运行MobileNetV1模型的性能数据:

  • CPU: 33ms
  • GPU: 21ms
  • DSP: 18ms

可以看到,MACE充分利用了异构计算资源,在DSP上取得了最佳性能。

MACE的应用案例

MACE已经在小米的多款产品中得到了应用,包括:

  1. 小米AI音箱
  2. 小米手机相机
  3. 小米智能家居产品

除了小米内部使用,MACE也被其他公司采用。例如,某知名安防公司使用MACE部署了人脸识别模型,在低端ARM处理器上实现了实时人脸检测和识别。

MACE的未来发展

MACE团队在Roadmap中列出了未来的发展计划,主要包括:

  1. 支持更多新的算子和网络结构
  2. 进一步优化性能,特别是在新的移动处理器上
  3. 改进开发者体验,提供更好的文档和工具
  4. 探索边缘AI和联邦学习等新场景的应用

结语

MACE作为一个专注于移动端的深度学习推理框架,在性能、功耗、响应性等方面都做了精心的优化。它的开源不仅为移动AI应用开发者提供了一个强大的工具,也为整个移动AI领域的发展做出了重要贡献。

随着移动设备算力的不断提升和AI应用场景的不断拓展,MACE这样的移动端AI框架必将发挥越来越重要的作用。我们期待看到MACE在未来能够支持更多新的AI模型和应用场景,为移动AI的发展持续贡献力量。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多