Medical-SAM2: 基于SAM2的医学影像分割新突破

RayRay
Medical SAM 2图像分割医学影像深度学习计算机视觉Github开源项目

Medical-SAM2:医学影像分割的新里程碑

在医学影像处理领域,精确的图像分割一直是一个关键而又具有挑战性的任务。近日,随着Meta AI发布的Segment Anything Model 2(SAM2)的问世,一个名为Medical-SAM2的创新项目应运而生,为医学影像分割带来了全新的可能性。

Medical-SAM2简介

Medical-SAM2(简称MedSAM-2)是一个基于SAM2框架开发的高级分割模型,旨在同时解决2D和3D医学图像分割任务。该项目由研究人员Jiayuan Zhu、Yunli Qi和Junde Wu共同开发,相关论文《Medical SAM 2: Segment Medical Images As Video Via Segment Anything Model 2》已在arXiv上发表。

Medical-SAM2的核心思想是将医学图像视为视频序列来处理,充分利用SAM2在视频分割方面的优势,同时针对医学影像的特点进行了专门的优化。这种创新的方法使得Medical-SAM2在处理复杂的医学影像时表现出色,尤其是在3D医学图像分割方面取得了显著的进展。

技术特点与创新

Medical-SAM2的主要技术特点包括:

  1. 统一的2D/3D分割架构: 通过将3D医学图像视为2D图像序列,Medical-SAM2实现了对2D和3D医学图像的统一处理。

  2. 基于SAM2的改进: 利用SAM2强大的视频分割能力,Medical-SAM2在处理连续的医学图像序列时表现出色。

  3. 交互式分割: 支持点击、边界框等多种交互式输入方式,使医生可以更精确地指导分割过程。

  4. 实时处理能力: 模型设计考虑了实时处理的需求,可以高效处理长序列的医学图像。

  5. 多尺度特征利用: 采用层次化编码器,有效捕捉医学图像中的多尺度特征。

  6. 记忆机制: 引入记忆编码器和记忆库,以更好地处理时序信息和对象追踪。

Medical-SAM2框架图

应用案例

Medical-SAM2在多个医学影像分割任务中展现了其强大的性能:

  1. 2D眼底图像分割: 在REFUGE数据集上进行视杯分割任务,Medical-SAM2展示了优秀的分割精度。

  2. 3D腹部多器官分割: 在BTCV数据集上,Medical-SAM2能够准确分割多个腹部器官,如下图所示:

3D腹部分割示例

这些案例充分证明了Medical-SAM2在处理不同维度和不同类型的医学图像时的versatility和高效性。

环境配置与使用

要使用Medical-SAM2,研究人员需要按照以下步骤配置环境:

  1. 创建conda环境:

    conda env create -f environment.yml
    conda activate medsam2
    
  2. 下载SAM2预训练权重:

    bash download_ckpts.sh
    
  3. 下载预处理好的数据集,如REFUGE或BTCV数据集。

  4. 运行训练脚本,例如2D分割任务:

    python train_2d.py -net sam2 -exp_name REFUGE_MedSAM2 -vis 1 -sam_ckpt ./checkpoints/sam2_hiera_small.pt -sam_config sam2_hiera_s -image_size 1024 -out_size 1024 -b 4 -val_freq 1 -dataset REFUGE -data_path ./data/REFUGE
    

未来展望

Medical-SAM2的出现为医学影像分割领域带来了新的可能性。随着进一步的研究和优化,我们可以期待:

  1. 更广泛的应用: 除了目前展示的眼底图像和腹部CT分割,Medical-SAM2有潜力应用于更多类型的医学影像,如脑部MRI、胸部X光等。

  2. 与其他AI技术的结合: 将Medical-SAM2与自然语言处理、强化学习等技术结合,可能会产生更智能的医学影像分析系统。

  3. 临床实践的深入: 随着模型的进一步验证和优化,Medical-SAM2有望在实际临床诊断和治疗规划中发挥重要作用。

  4. 个性化医疗的推进: 通过精确的器官和病变分割,Medical-SAM2可能为个性化医疗方案的制定提供更可靠的依据。

  5. 医学研究的加速: 高效准确的图像分割工具将大大加速医学影像相关的科研进程。

结语

Medical-SAM2的出现标志着医学影像处理技术进入了一个新的阶段。它不仅展示了AI技术在医疗领域的巨大潜力,也为跨领域技术融合提供了一个绝佳的范例。随着该项目的进一步发展和完善,我们有理由相信,它将为医学诊断、治疗和研究带来革命性的变革,最终造福广大患者。

医学影像处理的未来充满了无限可能,而Medical-SAM2无疑是这个激动人心的未来的重要组成部分。让我们共同期待这项技术在未来医疗实践中发挥更大的作用,为人类健康事业贡献力量。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多