MeshAnything: 艺术家级别的网格生成技术

RayRay
三维模型生成人工智能机器学习深度学习计算机视觉Github开源项目

MeshAnything:突破3D网格生成的新境界

在3D建模和计算机图形学领域,一项名为MeshAnything的创新技术正在引起广泛关注。这项由南洋理工大学S-Lab、上海人工智能实验室等多家机构联合开发的技术,旨在解决3D资产生成中的一个关键问题:如何高效地生成艺术家级别的网格模型。

什么是MeshAnything?

MeshAnything是一个基于自回归变换器的模型,能够从任何3D表示中生成艺术家级别的网格(Artist-Created Meshes,简称AMs)。这项技术的核心在于它能够模仿人类艺术家从各种3D表示中提取网格的过程,并将其应用于各种3D资产生产流程,如3D重建和生成等。

MeshAnything演示

如上图所示,MeshAnything能够从各种输入中生成高质量的网格模型,展现出惊人的灵活性和适应性。

MeshAnything的技术创新

MeshAnything的核心架构包含两个关键组件:

  1. VQ-VAE(Vector Quantized Variational Autoencoder):用于学习网格词汇表。
  2. 基于形状条件的仅解码器变换器:用于在学习到的词汇表上进行形状条件的自回归网格生成。

这种架构设计使MeshAnything能够生成面数少得多的网格,同时保持与之前方法相当的精度。研究表明,MeshAnything生成的网格面数可以减少数百倍,显著提高了存储、渲染和模拟效率。

MeshAnything与传统方法的对比

上图展示了MeshAnything与传统方法的对比。可以看到,MeshAnything生成的网格在保持形状精度的同时,大大减少了面数。

MeshAnything的工作流程

MeshAnything的工作流程如下:

  1. 从给定的3D资产中采样点云。
  2. 将点云编码为特征。
  3. 将编码后的特征注入仅解码器变换器,实现形状条件下的网格生成。

这种方法避免了直接学习复杂的3D形状分布,而是专注于通过优化拓扑结构高效构建形状,大大减轻了训练负担并提高了可扩展性。

MeshAnything工作流程

MeshAnything的应用前景

MeshAnything的出现为3D资产生产带来了新的可能性。它可以与各种3D资产生产方法集成,从而增强这些方法在整个3D行业中的应用。具体而言,MeshAnything可以应用于以下场景:

  1. 3D重建:将扫描或重建的点云数据转换为高质量的网格模型。
  2. 3D生成:将生成的3D形状转换为可用于工业应用的网格模型。
  3. 3D资产优化:将现有的高面数网格模型简化为低面数但保持高质量的网格模型。

MeshAnything V2:更进一步的突破

最近,研究团队发布了MeshAnything的升级版本——MeshAnything V2。这个新版本引入了一种称为Adjacent Mesh Tokenization(AMT)的新型网格tokenization方法,进一步提升了模型的性能和效率。

AMT的核心思想是尽可能使用单个顶点来表示一个面,而不是传统方法中使用的三个顶点。这种方法平均将token序列长度减少了一半,使得序列表示更加紧凑和结构化,从而从根本上提高了网格生成的效率和性能。

AMT示意图

MeshAnything V2的主要改进包括:

  1. 最大面数从800增加到1600,能够处理更复杂的模型。
  2. 生成效率和质量都有显著提升。
  3. 更好地适应各种3D资产生产流程。

MeshAnything的局限性和未来发展

尽管MeshAnything展现出了巨大的潜力,但它仍然存在一些局限性:

  1. 计算资源需求:生成一个网格模型需要约7GB显存和30秒时间(在A6000 GPU上)。
  2. 输入要求:输入网格需要归一化到单位包围盒,且上向量应为+Y以获得更好的结果。
  3. 面数限制:当前版本训练于少于800面的网格,无法生成超过800面的网格。

研究团队正在积极解决这些问题,未来的发展方向包括:

  1. 发布训练代码,使社区能够针对特定需求定制模型。
  2. 发布更大规模的模型,以处理更复杂的3D形状。
  3. 进一步优化模型架构,提高生成效率和质量。

结语

MeshAnything代表了3D网格生成技术的一个重要突破。它不仅提供了一种高效生成高质量网格的方法,还为3D资产生产流程带来了新的可能性。随着技术的不断发展和完善,我们可以期待看到更多令人兴奋的应用和创新。对于3D建模师、游戏开发者、VR/AR内容创作者以及任何涉及3D资产生产的领域,MeshAnything都将是一个值得关注和尝试的强大工具。

随着人工智能和计算机图形学的不断融合,像MeshAnything这样的技术正在重新定义我们创建和交互3D内容的方式。它不仅提高了效率,还为创作者提供了更多的创意空间。我们可以期待,在不久的将来,这类技术将成为3D内容创作的标准工具,推动整个行业向前发展。

编辑推荐精选

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

下拉加载更多