在计算机视觉和图形学领域,如何将静态图像转化为动态视频一直是一个充满挑战的研究课题。近日,来自东京大学和腾讯AI实验室的研究团队提出了一种名为MOFA-Video的创新方法,为这一领域带来了重大突破。这项研究成果将在ECCV 2024(欧洲计算机视觉会议)上发表,引起了学术界的广泛关注。
MOFA-Video是一种先进的可控图像动画方法,它能够利用各种额外的控制信号来将静态图像转换成动态视频。与以往仅能在特定运动领域工作或控制能力较弱的方法不同,MOFA-Video展现出了卓越的灵活性和多样性。
该方法的核心创新在于设计了多个领域感知的运动场适配器(MOFA-Adapters)。这些适配器能够在视频生成过程中精确控制生成的运动。MOFA-Adapters首先考虑视频的时间运动一致性,从给定的稀疏控制条件生成密集的运动流场。然后,将给定图像的多尺度特征作为引导特征进行包装,以实现稳定的视频扩散生成。
研究团队针对手动轨迹和人体关键点分别训练了两个运动适配器,因为它们都包含了关于控制的稀疏信息。训练完成后,不同领域的MOFA-Adapters还可以协同工作,实现更加可控的视频生成。
MOFA-Video的一大亮点在于其多样化的控制方式。用户可以通过以下几种方式来控制生成的视频:
人体关键点参考:通过提供人体姿态的关键点序列来控制视频中人物的动作。
手动轨迹:用户可以绘制简单的运动轨迹,系统会据此生成相应的动画效果。
参考视频:利用另一段视频作为参考,将其运动特征迁移到目标图像上。
混合控制:上述多种控制方式可以灵活组合,实现更精细和复杂的动画效果。
这种多样化的控制方式使MOFA-Video在诸如电影特效制作、广告创意、游戏开发等领域具有广阔的应用前景。
MOFA-Video的工作原理可以分为训练和推理两个阶段:
训练阶段:
推理阶段:
这种设计使得MOFA-Video能够在保持高质量视频生成能力的同时,实现灵活多样的控制。
MOFA-Video的应用场景十分广泛,包括但不限于:
随着技术的不断发展,我们可以期待MOFA-Video在未来得到进一步的优化和扩展。例如,提高生成视频的分辨率和帧率,增加对更复杂场景和多个物体的控制能力,以及与其他AI技术的结合等。
MOFA-Video项目已在GitHub上开源,这为研究人员和开发者提供了宝贵的学习和实验资源。项目地址: https://github.com/MyNiuuu/MOFA-Video
研究团队鼓励社区参与到MOFA-Video的开发和完善中来。无论是提出新的想法、报告问题还是贡献代码,都将推动这项技术的进步。
MOFA-Video的出现标志着可控图像动画领域的一个重要里程碑。它不仅展示了人工智能在创意领域的巨大潜力,也为未来的人机交互和内容创作提供了新的可能性。随着技术的不断发展和应用的深入,我们有理由相信,MOFA-Video将在计算机视觉和图形学领域掀起一场革命,为创意工作者和普通用户alike带来前所未有的创作体验。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功 能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专 为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式, 还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号