NLP菜鸟逆袭记 - 自然语言处理入门实践项目

Ray

AwesomeNLP NLP菜鸟逆袭记是一个全面的自然语言处理入门实践项目,涵盖了NLP的主要任务和技术:

  1. 文本分类
  • 多类别文本分类:FastText、TextCNN、TextRNN、TextRCNN、Transformer等模型实现
  • 多标签文本分类:基于Bert的实现
  • 方面级情感分析:基于Bert的实现
  • 文本匹配
  1. 信息抽取
  • 命名实体识别:HMM、MEMM、CRF、Bert-CRF、Bert-Softmax、MRC等多种方法
  • 关系抽取:基于Bert的pipeline方法、CasRel、GPLinker等
  • 事件抽取:基于Bert和MRC的方法
  • 属性抽取:基于Albert的实现
  • 关键词抽取
  • 新词发现
  1. 知识图谱
  • 知识图谱构建:金融领域知识图谱构建实践
  • 知识问答:基于知识图谱的问答系统
  • 实体链接
  • 知识图谱补全
  • Neo4j实战
  1. 机器翻译
  • 基于seq2seq的英中翻译实现
  1. 问答系统
  • 机器阅读理解:基于QANet的中文阅读理解
  • 检索式问答:FAQ系统、Faiss和Milvus实践
  • 基于知识图谱的问答
  1. 文本生成

  2. Text-to-SQL

  3. 文本纠错

  4. 文本挖掘

  5. 知识蒸馏

  6. 模型加速:CTranslate2、Optimum

  7. OCR:pytesseract、hn_ocr、PaddleOCR

  8. TTS:pyttsx3、PaddleSpeech等

  9. Prompt工程

  10. Embedding技术

该项目提供了丰富的代码实现和实践经验,是NLP入门学习的优秀资源。所有代码都经过测试可以正常运行,适合初学者参考和学习。

avatar
0
0
0
相关项目
Project Cover

CLIP

CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。

Project Cover

AutoGroq

AutoGroq根据用户需求动态生成AI团队,优化工作流程和项目管理。无需手动配置,即可实现专家生成、自然对话、代码片段提取等功能,并支持多种LLM整合。该工具已被近8000名开发者采用。

Project Cover

pytorch-book

这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。

Project Cover

rags

RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。

Project Cover

Deep-Learning-Interview-Book

该指南全面涵盖深度学习领域的求职面试知识,包括数学、机器学习、深度学习、强化学习、计算机视觉、图像处理、自然语言处理、SLAM、推荐算法、数据结构与算法、编程语言(C/C++/Python)、深度学习框架等,旨在帮助求职者高效准备面试。

Project Cover

smile

Smile是一个高效且全面的机器学习系统,支持Java和Scala,包含自然语言处理、线性代数、图形、插值和可视化功能。其先进的数据结构和算法提供卓越性能,涵盖分类、回归、聚类、关联规则挖掘、特征选择、多维缩放、遗传算法、缺失值插补和高效近邻搜索等领域。用户可以通过Maven中央库使用,并在Smile网站找到编程指南和详细信息。

Project Cover

courses

本仓库汇集了各种人工智能课程和资源链接,适合不同学习阶段的用户。涵盖生成式AI、深度学习、自然语言处理等多个主题的免费课程,资源来自麻省理工学院、斯坦福大学、哈佛大学等知名机构。欢迎贡献和建议,共同打造优质的AI学习平台。

Project Cover

nlp

介绍自然语言处理(NLP)的基础知识和实际应用,包括常用数据集、机器学习模型评价方法、词袋模型、TFIDF、Word2Vec、Doc2Vec等技术,以及多层感知机、fasttext和LDA在文档分类和主题建模中的应用。还展示了对美食评语的情感分析,说明了NLP在文本理解与安全领域的重要性。此外,还介绍了一本开源NLP入门书籍的写作和更新过程,适合想深入了解NLP技术的读者。

Project Cover

BLOOM

作为致力于通过开源和开放科学推进AI发展的平台,BLOOM提供包括BloomModel在内的多款AI模型,充实的文档与代码资源助力研究人员与开发者更好地探索与应用前沿AI技术。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号