Open-LLaVA-NeXT: 开源实现大规模多模态模型的潜力

RayRay
LLaVA-NeXT多模态模型视觉语言训练开源实现AI模型评估Github开源项目

Open-LLaVA-NeXT:开源实现大规模多模态模型的潜力

随着大型语言模型(LLM)和视觉-语言模型(VLM)的快速发展,多模态人工智能正迎来前所未有的机遇。作为LLaVA-NeXT系列的开源实现,Open-LLaVA-NeXT项目为研究人员和开发者提供了一个强大的工具,帮助他们探索和推动大规模多模态模型的边界。本文将详细介绍Open-LLaVA-NeXT项目的主要特点、模型架构、训练流程以及未来发展方向。

项目亮点

Open-LLaVA-NeXT项目具有以下几个突出特点:

  1. 🔥 完全开源的训练数据和检查点。项目公开了各个训练阶段使用的所有数据集和模型检查点,方便研究人员进行复现和改进。这种开放性极大地促进了多模态AI领域的学术交流与合作。

  2. 🔥 能够复现LLaVA-NeXT的优秀结果。通过精心设计的训练流程和超参数调优,Open-LLaVA-NeXT成功复现了原始LLaVA-NeXT模型在各项基准测试上的出色表现。

  3. 🔥 基于LLaVA代码库的最小化修改。项目在LLaVA的基础上进行了必要的改进,同时保持了代码结构的简洁性和易用性,降低了研究人员的使用门槛。

这些特点使得Open-LLaVA-NeXT成为探索大规模多模态模型的理想平台。无论是进行学术研究还是应用开发,该项目都为用户提供了坚实的基础。

模型动物园

Open-LLaVA-NeXT提供了多个预训练模型供用户选择,涵盖了不同规模和架构的变体。以下是部分代表性模型的性能对比:

模型名称视觉编码器语言模型MME得分SEED得分SQA得分MMB得分MMB-CN得分TextVQA得分GQA得分
llava-next-vicuna-7bCLIP-L-336Vicuna-7B151970.270.167.460.664.964.2
open-llava-next-vicuna-7bCLIP-L-336Vicuna-7B154071.170.768.560.767.264.3
llava-next-llama3-8bCLIP-L-336LLaMA3-8B159172.773.472.669.065.065.5
open-llava-next-llama3-8bCLIP-L-336LLaMA3-8B155274.477.374.470.469.865.9

从表中可以看出,Open-LLaVA-NeXT的模型在多个基准测试上都取得了与原始LLaVA-NeXT相当甚至更优的结果。这证明了该项目成功复现了LLaVA-NeXT的核心技术,并在某些方面实现了进一步的改进。

Open-LLaVA-NeXT模型架构

训练流程

Open-LLaVA-NeXT的训练过程分为两个主要阶段:

  1. 特征对齐阶段:使用LAION-CC-SBU数据集的558K子集,将预训练的视觉编码器与冻结的语言模型进行连接。这一阶段旨在建立视觉和语言特征之间的初步映射关系。

  2. 视觉指令微调阶段:使用100万个完全开源的数据样本对整个模型进行微调。这一阶段旨在提高模型在各种视觉-语言任务上的表现,增强其多模态理解和生成能力。

训练过程中使用了一系列优化技巧,包括动态高分辨率处理、数据混合策略以及针对不同模块的学习率调整等。这些技巧的综合应用使得Open-LLaVA-NeXT能够在有限的计算资源下实现出色的性能。

未来发展方向

Open-LLaVA-NeXT项目团队也提出了几个未来的发展方向:

  1. 复现LLaVA-Next-LLaMA3-8B和LLaVA-Next-Nous-Yi-34B等更大规模的模型。
  2. 支持SigLIP等新型视觉编码器,并探索更多不同规模的语言模型。
  3. 集成VLMEvalKit工具包,为模型评估提供更加便捷的方式。

这些计划显示了项目团队持续推动多模态AI发展的决心。随着更多研究者和开发者的加入,Open-LLaVA-NeXT有望在未来释放出更大的潜力。

总结

Open-LLaVA-NeXT项目为多模态AI研究提供了一个开放、强大且易用的平台。通过开源训练数据和模型检查点,复现先进结果,以及提供清晰的代码结构,该项目为推动大规模多模态模型的发展做出了重要贡献。随着项目的不断完善和社区的积极参与,我们有理由期待Open-LLaVA-NeXT在未来带来更多令人兴奋的突破。

无论您是研究人员、开发者还是对多模态AI感兴趣的爱好者,Open-LLaVA-NeXT都为您提供了一个绝佳的起点。让我们共同探索大规模多模态模型的无限可能,为人工智能的未来贡献自己的力量。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多