Open-MAGVIT2: 突破自回归视觉生成的新纪元

Ray

Open-MAGVIT2: 突破自回归视觉生成的新纪元

在视觉生成领域,VQGAN作为初始tokenizer长期以来一直发挥着不可或缺的作用,特别是在自回归视觉生成任务中。然而,由于码本大小和利用率的限制,基于VQGAN的自回归生成能力一直被低估。为了突破这一瓶颈,腾讯ARC团队开源了Open-MAGVIT2项目,这是对原始MAGVIT2模型的重新实现,旨在推动自回归视觉生成技术的发展。

项目背景与目标

MAGVIT2提出了一种强大的视觉tokenizer,通过引入新颖的无查找(LookUpFree)量化技术并将码本大小扩展到$2^{18}$,在图像和视频生成任务中展现出令人瞩目的性能。这一技术在近期最先进的自回归视频生成模型VideoPoet中发挥了关键作用。然而,研究界一直无法获取这个强大的tokenizer。

Open-MAGVIT2项目的目标是遵循MAGVIT-2中tokenizer设计的重要见解,并使用PyTorch重新实现它,以期达到与原始模型最接近的结果。该项目希望通过这一努力,能够在自回归视觉生成领域推动创新和创造力的发展。

项目亮点

  1. 最先进的性能: Open-MAGVIT2在8倍下采样时实现了0.39的rFID,超越了VQGAN、MaskGIT以及最近的TiTok、LlamaGen和OmniTokenizer等模型。

  2. 灵活的分辨率支持: 项目提供了针对不同分辨率的训练代码和检查点,包括128x128和256x256的ImageNet模型。

  3. 高度的码本利用率: 相比其他模型,Open-MAGVIT2实现了100%的码本利用率,充分发挥了大规模码本的潜力。

  4. 优秀的重建质量: 在PSNR指标上,Open-MAGVIT2达到了21.53(256x256)和25.78(128x128)的高分,展现出卓越的图像重建能力。

核心技术

Open-MAGVIT2的核心是其视觉tokenizer,由编码器、无查找量化器(LFQ)和解码器组成。这一设计使得模型能够高效地将图像转换为离散的token序列,并在重建过程中保持高质量。

Open-MAGVIT2 Framework

图1: Open-MAGVIT2 tokenizer的框架图,展示了编码器、LFQ和解码器的组成

性能评估

在与其他先进模型的对比中,Open-MAGVIT2展现出显著的优势:

方法Token类型Token数量训练数据码本大小rFIDPSNR码本利用率
VQGAN2D16x16256x256 ImageNet10247.9419.4-
MaskGIT2D16x16256x256 ImageNet10242.28--
LlamaGen2D16x16256x256 ImageNet163842.1920.7997%
Open-MAGVIT22D16x16256x256 ImageNet2621441.5321.53100%

表1: 不同tokenizer在256x256 ImageNet 50k验证集上的重建性能对比

特别值得注意的是,Open-MAGVIT2在128x128分辨率上训练并在512x512分辨率上测试时,仍然保持了出色的性能:

方法Token类型Token数量数据rFID
MAGVIT22D16x16128x128 ImageNet1.21
Open-MAGVIT22D16x16128x128 ImageNet1.56

表2: 与原始MAGVIT2在128x128分辨率上的性能对比

视觉效果展示

Open-MAGVIT2不仅在数据指标上表现优异,在实际的图像重建效果上也令人印象深刻。以下是一些重建结果的可视化:

256x256 Reconstruction

图2: 在256x256分辨率上训练和测试的Open-MAGVIT2 tokenizer重建效果。(a)为原始图像,(b)为重建图像。

512x512 Reconstruction

图3: 在128x128分辨率上训练并在512x512分辨率上测试的Open-MAGVIT2 tokenizer重建效果。(a)为原始图像,(b)为重建图像。

未来展望

Open-MAGVIT2项目目前仍处于早期阶段,团队正在积极开发中。未来的工作计划包括:

  1. 通过大规模训练进一步改进图像tokenizer。
  2. 完成自回归模型的训练。
  3. 开发视频tokenizer及其对应的自回归模型。

这些计划的实现将进一步推动自回归视觉生成技术的发展,为研究者和开发者提供更强大的工具。

结语

Open-MAGVIT2项目为自回归视觉生成领域带来了新的可能性。通过开源实现MAGVIT2的核心技术,该项目不仅展示了卓越的性能,还为整个社区提供了宝贵的研究资源。随着项目的不断发展和完善,我们期待看到更多基于这一技术的创新应用,推动视觉生成技术向更高水平迈进。

对于有兴趣深入了解或参与项目的研究者和开发者,Open-MAGVIT2的GitHub仓库提供了详细的安装指南、训练脚本和评估方法。通过共同努力,我们有望在不久的将来见证自回归视觉生成技术的新突破。

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号