在计算机视觉领域,准确跟踪视频中的多个人体一直是一个具有挑战性的任务。来自加州大学伯克利分校的研究人员最近提出了一种名为PHALP(Predicting Human Appearance, Location and Pose)的创新方法,通过预测人体的3D表征来实现单目视频中的人体跟踪。这项研究不仅在多个基准测试中取得了最先进的结果,还为人体动作分析、人机交互等领域带来了新的可能性。
PHALP的核心思想是将人体跟踪问题转化为3D表征的预测问题。具体来说,该方法包含以下几个关键步骤:
3D人体重建:从单帧图像中将人体"提升"到3D空间,获取人体的3D姿态、3D位置和3D外观信息。
轨迹表示:随着跟踪的进行,将每个人体的3D观测结果收集到一个轨迹表示中。
时序建模:对3D位置、3D外观和3D姿态等属性建立时序模型。
未来状态预测:利用时序模型预测轨迹的未来状态。
概率匹配:计算预测状态与新一帧观测结果之间的相似度,并进行匹配。
轨迹更新:根据匹配结果更新相应的轨迹。
这种基于3D预测的方法使PHALP能够更好地处理遮挡、快速运动等复杂场景,从而实现更稳定和准确的人体跟踪。
PHALP首先使用先进的人体姿态估计模型从单帧图像中提取人体的2D关键点。然后,它采用SMPL(Skinned Multi-Person Linear Model)模型将这些2D关键点"提升"到3D空间。SMPL是一种参数化的人体模型,可以通过调整姿态和形状参数来生成逼真的3D人体网格。
在这个过程中,PHALP不仅获得了人体的3D姿态信息,还能估计人体在3D空间中的位置以及外观特征。这些丰富的3D信息为后续的跟踪提供了坚实的基础。
随着视频帧的推进,PHALP将每个检测到的人体的3D观测结果收集到一个轨迹表示中。这个轨迹包含了人体在时间维度上的连续3D信息。
基于这些时序数据,PHALP为3D位置、3D外观和3D姿态等属性建立时序模型。这些模型能够捕捉人体运动的动态特性,为预测未来状态提供依据。研究人员采用了不同的时序模型来处理不同类型的属性,例如使用线性回归模型预测3D位置,使用自回归模型预测3D姿态等。
对于视频中的每一个新帧,PHALP会利用建立的时序模型预测每个轨迹的未来状态。这个预测状态包括人体在新帧中的预期3D位置、3D姿态和3D外观。
然后,PHALP计算预测状态与新帧中实际观测到的人体之间的相似度。这个相似度计算采用了概率框架,考虑了位置、姿态和外观等多个方面的匹配程度。最后,通过匈牙利算法解决关联问题,将预测轨迹与观测结果进行最优匹配。
根据匹配结果,PHALP更新相应的轨迹信息。对于成功匹配的轨迹,它会融合预测状态和观测结果,从而获得更准确的估计。对于未匹配的观测,系统会考虑是否需要初始化新的轨迹。同时,PHALP还实现了轨迹管理机制,能够处理人体进入和离开场景的情况。
此外,PHALP还采用了一些优化策略来提高跟踪的稳定性和精度。例如,它使用了遮挡处理机制,在人体被遮挡时仍能维持轨迹的连续性。系统还实现了长短期记忆功能,能够在人体短暂消失后重新出现时恢复跟踪。
PHALP在多个公开数据集上进行了评估,包括PoseTrack、3DPW等。实验结 果表明,PHALP在多人跟踪精度、3D姿态估计准确性等指标上都达到了最先进的水平。特别是在处理复杂场景(如严重遮挡、快速运动)时,PHALP展现出了明显的优势。
PHALP的潜在应用场景非常广泛,包括但不限于:
动作分析:在体育科学、舞蹈研究等领域,PHALP可以提供详细的3D人体运动数据。
安防监控:PHALP能够在复杂环境中稳定跟踪多个人体,有助于提高视频监控系统的智能化水平。
人机交互:在虚拟现实、增强现实等应用中,PHALP可以实现更自然、精确的人体动作捕捉。
电影特效:PHALP的3D重建能力可以辅助电影制作中的动作捕捉和角色动画。
医疗康复:通过分析病人的运动模式,PHALP可以协助制定个性化的康复计划。
研究团队已经将PHALP的代码开源,并提供了详细的安装和使用说明。安装PHALP的主要步骤如下:
克隆PHALP仓库:
git clone https://github.com/brjathu/PHALP.git
创建并激活conda环境:
conda create -n phalp python=3.10
conda activate phalp
安装PyTorch和其他依赖:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -e .[all]
安装完成后,用户可以通过简单的命令行指令在自己的视频上运行PHALP:
python scripts/demo.py video.source=path/to/your/video.mp4 video.output_dir='outputs'
这个命令将会处理指定的视频,并在outputs目录下生成可视化结果和跟踪数据。
尽管PHALP已经展现出了优秀的性能,但研 究团队表示还有进一步改进的空间:
实时处理:目前PHALP的处理速度还不足以支持实时应用,未来可以通过算法优化和硬件加速来提高处理速度。
多视角融合:结合多个摄像头的数据,可以进一步提高3D重建和跟踪的精度。
场景理解:结合场景语义信息,可以改善在复杂环境下的跟踪性能。
行为理解:在跟踪的基础上,进一步分析和理解人体的行为和意图。
隐私保护:在保持跟踪精度的同时,探索如何更好地保护被跟踪对象的隐私。
PHALP代表了人体跟踪技术的一个重要进展。通过将2D跟踪问题转化为3D预测问题,PHALP不仅提高了跟踪的精度和稳定性,还为后续的人体行为分析提供了丰富的3D信息。随着技术的不断完善和应用场景的拓展,我们可以期待PHALP在计算机视觉和人机交互等领域带来更多创新和突破。
PHALP的成功也反映了跨学科研究的重要性。这项工作结合了计算机视觉、机器学习、人体建模等多个领域的知识,展示了如何通过融合不同学科的方法来解决复杂的实际问题。未来,我们期待看到更多类似的跨领域创新,推动人工智能技术在更广泛的应用中发挥作用。
Rajasegaran, J., Pavlakos, G., Kanazawa, A., & Malik, J. (2022). Tracking People by Predicting 3D Appearance, Location & Pose. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6), 1-16.
Kanazawa, A., Black, M. J., Jacobs, D. W., & Malik, J. (2018). End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A., Tzionas, D., & Black, M. J. (2019). Expressive body capture: 3d hands, face, and body from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., & Schiele, B. (2018). Posetrack: A benchmark for human pose estimation and tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
通过PHALP这项研究,我们看到了计算机视觉技术在人体跟踪领域的最新进展。它不仅推动了技术的发展,也为众多实际应用提供了新的可能性。随着研究的深入和技术的完善,我们有理由相信,PHALP及其衍生技术将在未来发挥越来越重要的作用,为人类社会带来更多便利和价值。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自 然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器 使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借 助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号