近年来,随着大语言模型(LLMs)技术的快速发展,其在医疗健康领域的应用引起了广泛关注。医疗大语言模型(Medical Large Language Models, Med-LLMs)作为一种新兴的人工智能技术,在理解和生成医学文本、辅助医疗决策等方面展现出巨大潜力。本文将全面介绍Med-LLMs的发展现状、构建方法、数据来源、下游任务、临床应用以及面临的挑战,为研究者和实践者提供一份详尽的实用指南。
Med-LLMs的发展主要围绕两个核心目标:
超越人类专家水平:随着模型规模和训练数据的不断增加,Med-LLMs在某些医疗任务上的表现已经接近或超过了人类专家。未来,Med-LLMs有望在更多复杂的医疗场景中发挥关键作用。
随着模型规模扩大而产生的新兴能力:研究表明,随着参数量的增加,Med-LLMs可能会产生一些令人惊喜的新兴能力,如多步推理、跨域迁移等。这些能力为Med-LLMs在医疗领域的更广泛应用奠定了基础。
目前,构建Med-LLMs主要有三种方法:
从头预训练:这种方法需要大量的医学领域文本数据,如生物医学文献、电子病历等。代表性模型包括BiomedGPT、NYUTron、GatorTronGPT等。
微调通用LLMs:这种方法基于已有的通用LLMs(如GPT系列),使用医学领域数据进行进一步微调。代表性工作包括Med42、MedLlama3、BioMistral等。
提示工程:这种方法直接利用通用LLMs,通过设计特定的提示来完成医疗任务。如MedPrompt、Dr. Knows等工作。
Med-LLMs的训练和微调需要大量高质量的医学数据,主要包括:
临床知识库:如Drugs.com、DrugBank、NHS Health等权威医学信息来源。
预训练数据:包括PubMed、MIMIC-III等大规模医学文献和临床数据集。
微调数据:如MedTrinity-25M、cMeKG、CMD等专门用于Med-LLMs微调的数据集。
Med-LLMs可以应用于多种医学自然语言处理任务,主要分为生成式任务和判别式任务两大类:
生成式任务:
判别式任务:
Med-LLMs在临床实践中有广泛的应用前景:
检索增强生成:结合外部知识库,提高Med-LLMs回答的准确性和可靠性。
医疗决策支持:辅助医生进行诊断、治疗方案制定等。
临床编码:自动将非结构化医疗文本转换为标准化的医学编码。
临床报告生成:根据检查结果自动生成规范的医学报告。
医学教育:为医学生和医护人员提供个性化的学习资源。
医疗机器人:与医疗机器人结合,提供智能化的医疗服务。
医学翻译:实现跨语言的医学文献翻译和交流。
心理健康支持:为有心理健康需求的患者提供初步的咨询和支持。
尽管Med-LLMs展现出巨大潜力,但在实际应用中仍面临诸多挑战:
幻觉:模型可能生成看似合理但实际错误的内容,这在医疗领域尤其危险。
评估基准和指标缺乏:缺乏统一的评估标准来衡量Med-LLMs的性能。
领域数据限制:高质量的医疗数据往往存在隐私和获取困难的问题。
新知识适应:医学知识快速更新,Med-LLMs需要不断学习新知识。
行为对齐:确保Med-LLMs的输出符合医疗伦理和专业规范。
伦理、法律和安全问题:Med-LLMs的使用涉及患者隐私、医疗责任等复杂问题。
针对当前面临的挑战,Med-LLMs的未来发展可能包括以下方向:
引入新的评估基准:开发更加全面和严格的评估标准。
跨学科合作:加强AI研究者与医学专家的合作。
多模态LLM:结合图像、语音等多模态信息,提高模型的理解和生成能力。
医疗智能体:开发能够自主完成复杂医疗任务的AI系统。
Med-LLMs作为一种强大的AI技术,正在深刻改变医疗健康领域的研究和实践。尽管仍面临诸多挑战,但通过持续的技术创新和跨学科合作,Med-LLMs有望在未来为医疗诊断、治疗决策、健康管理等方面带来革命性的变革,最终实现提高医疗质量、降低医疗成本、改善患者体验的目标。
作为研究者和实践者,我们需要在推动Med-LLMs技术进步的同时,充分认识到其局限性,严格把控其应用边界,确保Med-LLMs在为医疗健康事业做出贡献的同时,不会给患者带来潜在的风险。Med-LLMs的发展之路任重而道远,需要产学研各界的共同努力。
图1: Med-LLMs的评估框架
Med-LLMs的评估是一个复杂的系统 工程,需要从多个维度进行全面考量。如图1所示,评估框架主要包括生成式任务和判别式任务两大类,涵盖了文本摘要、问答、实体抽取、关系抽取等多种下游任务。针对不同任务,需要采用不同的评估指标和数据集。只有建立起科学、全面的评估体系,才能准确衡量Med-LLMs的性能,为其进一步优化和应用提供指导。
图2: Med-LLMs的构建pipeline
Med-LLMs的构建是一个多阶段的过程,如图2所示。从最底层的通用语言模型出发,通过领域预训练、任务微调、提示工程等多个阶段,逐步构建起专门面向医疗领域的大语言模型。在这个过程中,数据的质量和数量、训练策略的选择、模型架构的设计等都是关键因素。未来,随着技术的进步,这个pipeline可能会进一步优化,产生更加高效和强大的Med-LLMs。
总的来说,Med-LLMs作为一种新兴的AI技术,正在为医疗健康领域带来前所未有的机遇。然而,要充分发挥Med-LLMs的潜力,还需要研究者、医学专家、政策制定者等多方共同努力,在推动技术创新的同时,妥善解决数据隐私、伦理安全、模型可解释性等一系列挑战。相信在不久的将来,Med-LLMs必将成为改善全球医疗健康水平的重要力量。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块 。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使 用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号