pytorch-summary简介
pytorch-summary是一个用于PyTorch模型可视化的工具库,可以帮助开发者快速查看模型的结构信息,包括各层的输出shape、参数数量等。它的功能类似于Keras中的model.summary()函数,但专门针对PyTorch模型设计。
使用pytorch-summary,您可以轻松获得模型的以下信息:
- 每一层的类型和名称
- 每一层的输出shape
- 每一层的参数数量
- 模型的总参数量
- 模型的可训练参数量
- 模型的不可训练参数量
- 模型的输入大小
- 模型的前向/反向传播大小
- 模型参数的大小
- 模型的总大小估计
这些信息对于模型调试和优化非常有帮助。
安装和使用
安装pytorch-summary非常简单,只需一行命令:
pip install torchsummary
基本使用方法如下:
from torchsummary import summary
model = YourModel()
summary(model, input_size=(channels, H, W))
其中input_size需要指定模型输入的尺寸。
主要特性
pytorch-summary的主要特性包括:
- 支持RNN、LSTM等循环神经网络
- 支持Sequential和ModuleList
- 支持多输入模型
- 可配置显示的列
- 可调整显示的深度
- 支持verbose模式显示权重和偏置层
- 返回ModelStatistics对象,包含所有汇总数据
使用示例
以下是一些常见模型的使用示例:
CNN模型
import torch
import torch.nn as nn
from torchsummary import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
summary(model, (1, 28, 28))
输出:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 10, 24, 24] 260
Conv2d-2 [-1, 20, 8, 8] 5,020
Linear-3 [-1, 50] 16,050
Linear-4 [-1, 10] 510
================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.08
Estimated Total Size (MB): 0.15
----------------------------------------------------------------
VGG16模型
import torch
from torchvision import models
from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg = models.vgg16().to(device)
summary(vgg, (3, 224, 224))
输出:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 224, 224] 1,792
ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928
ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0
Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0
Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0
MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168
ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080
ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080
ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0
Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0
Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0
Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0
MaxPool2d-24 [-1, 512, 14, 14] 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808
ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14] 2,359,808
ReLU-28 [-1, 512, 14, 14] 0
Conv2d-29 [-1, 512, 14, 14] 2,359,808
ReLU-30 [-1, 512, 14, 14] 0
MaxPool2d-31 [-1, 512, 7, 7] 0
Linear-32 [-1, 4096] 102,764,544
ReLU-33 [-1, 4096] 0
Dropout-34 [-1, 4096] 0
Linear-35 [-1, 4096] 16,781,312
ReLU-36 [-1, 4096] 0
Dropout-37 [-1, 4096] 0
Linear-38 [-1, 1000] 4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------
更多学习资源
-
官方代码仓库,包含详细文档和使用示例。
-
可查看最新版本和安装说明。
-
How to get Model Summary in PyTorch
一篇详细介绍pytorch-summary用法的文章。
-
社区用户讨论pytorch-summary的使用。
希望这些资料能帮助您快速掌握pytorch-summary的使用。如果您在使用过程中遇到任何问题,欢迎在GitHub仓库提issue讨论。😊