Q-Bench:多模态大语言模型在低层视觉任务上的基准测试

RayRay
Q-Bench低层视觉多模态大语言模型基准测试ICLR2024Github开源项目

Q-Bench: 多模态大语言模型的低层视觉能力测试

近年来,随着人工智能技术的快速发展,多模态大语言模型(MLLMs)在处理文本和图像的复杂任务中展现出了惊人的能力。然而,这些模型在低层视觉任务中的表现如何?为了回答这个问题,来自南洋理工大学、上海交通大学和商汤科技的研究团队提出了Q-Bench,这是一个专门针对多模态大语言模型在低层视觉任务上能力的全面基准测试。

Q-Bench的核心内容

Q-Bench包括三个主要方面:

  1. 感知(A1): 测试模型对图像低层特征的识别能力
  2. 描述(A2): 评估模型描述图像细节的准确性和完整性
  3. 评估(A3): 检验模型对图像质量进行定量评分的能力

这三个方面共同构成了对MLLMs低层视觉能力的全面评估。

Q-Bench概览

数据集与评估方法

为了实现上述目标,研究团队收集并构建了两个基准数据集:

  • LLVisionQA: 用于测试模型的低层视觉感知能力
  • LLDescribe: 用于评估模型描述图像细节的能力

这些数据集涵盖了各种低层视觉任务,如光照、清晰度、色彩等方面的判断和描述。

对于图像质量评估(IQA)任务,研究团队采用了公开的IQA数据集,并提供了一个通用的评估框架,使得任何多模态语言模型都可以在此基础上进行测试。

评估结果与发现

研究团队对多个主流的闭源和开源MLLMs进行了测试,包括GPT-4V、Gemini Pro、Qwen-VL-Plus等。测试结果显示:

  1. 在单图像感知任务(A1-Single)中,BlueImage-GPT表现最佳,整体得分达到0.8107,超过了GPT-4V和人类初级水平。

  2. 在图像对比任务(A1-Pair)中,BlueImage-GPT同样领先,得分为0.8348,接近人类高级水平。

  3. 开源模型的表现整体落后于闭源API模型,最佳开源模型的整体得分约为0.65。

这些结果表明,尽管MLLMs在低层视觉任务上已经取得了显著进展,但仍有提升空间,特别是在开源模型方面。

模型性能对比

Q-Bench的应用与意义

Q-Bench不仅是一个评估工具,也为研究人员和开发者提供了宝贵的资源:

  1. 基准测试: 研究者可以使用Q-Bench评估自己开发的模型,与现有模型进行比较。

  2. 模型改进: 通过分析模型在Q-Bench上的表现,可以找出模型在低层视觉任务上的不足,从而有针对性地进行改进。

  3. 数据集资源: LLVisionQA和LLDescribe数据集为研究低层视觉任务提供了高质量的训练和测试数据。

  4. 评估框架: Q-Bench提供的评估框架可以帮助研究者快速测试自己的模型,降低了评估的门槛。

使用Q-Bench

研究团队为使用Q-Bench提供了详细的指南:

  1. 数据下载: 可以通过GitHub Release或Hugging Face Datasets下载LLVisionQA和LLDescribe数据集。

  2. 模型测试: 建议将模型转换为Hugging Face格式,以便使用提供的示例脚本进行测试。

  3. 结果提交: 研究者可以选择提交测试结果或直接提交模型进行评估。

  4. IQA任务: 对于图像质量评估任务,研究团队提供了伪代码和实际示例,方便研究者进行实现和测试。

未来展望

Q-Bench的发布标志着多模态大语言模型在低层视觉任务评估方面的一个重要里程碑。随着技术的不断发展,我们可以期待:

  1. 更多模型将在Q-Bench上进行测试,为模型能力的横向比较提供更全面的数据。

  2. 研究者可能会基于Q-Bench的结果,开发出在低层视觉任务上表现更优秀的新模型。

  3. Q-Bench可能会进一步扩展,包含更多类型的低层视觉任务,为MLLMs的全面评估提供更广泛的基准。

  4. 工业界可能会更多地关注并应用Q-Bench,将其作为评估和选择多模态模型的重要参考。

结语

Q-Bench的提出为多模态大语言模型在低层视觉任务上的能力评估提供了一个全面、系统的框架。它不仅揭示了当前模型的能力和局限,也为未来的研究和开发指明了方向。随着更多研究者和开发者的参与,Q-Bench将继续推动多模态AI技术在低层视觉任务上的进步,为计算机视觉和自然语言处理的融合贡献力量。

欢迎感兴趣的研究者访问Q-Bench的GitHub仓库了解更多详情,并参与到这个激动人心的研究中来。让我们共同推动多模态AI技术的发展,探索人工智能在视觉理解方面的新前沿!

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多