近年来,随着大型语言模型(LLMs)的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)技术作为一种有效提升AI生成内容质量的方法,受到了学术界和工业界的广泛关注。本文将全面介绍RAG技术的基本原理、最新进展以及在多个领域的应用,为读者提供RAG技术的系统性概览。
检索增强生成(RAG)是一种将检索方法与深度学习相结合的技术,旨在克服大型语言模型静态知识的局限性,通过整合外部动态信息来提高模型的准确性和可靠性。RAG主要针对文本领域,通过利用真实世界的数据来减少LLMs生成看似合理但实际错误的回答,从而提高其准确性和可靠性。
RAG的基本工作流程可以分为四个关键阶段:
这种结构化的框架不仅整合了现有的RAG研究,还阐明了其技术基础,突出了RAG在扩展LLMs适应性和应用范围方面的潜力。
RAG的基础架构主要包括以下几个方面:
基于查询的RAG是最常见的RAG形式,它通过直接使用输入查询来检索相关信息。代表性工作包括REALM、Self-RAG等。这种方法简单直接,但可能受限于查询的表达能力。
基于潜在表示的RAG通过学习输入的潜在表示来进行检索,可以捕捉更丰富的语义 信息。如EditSum、RACE等工作都采用了这种方法。这种方法可以更好地处理复杂的语义关系,但可能需要更多的计算资源。
基于logit的RAG直接在模型的输出层(logit)上进行检索和融合。代表性工作如kNN-LM等。这种方法可以更直接地影响模型的输出,但可能会影响模型的泛化能力。
推测性RAG是一种新兴的RAG形式,它通过预测可能的输出来优化检索过程。如REST、GPTCache等工作都探索了这一方向。这种方法可以提高RAG的效率,但可能会增加系统的复杂性。
为了进一步提升RAG的性能,研究者们提出了多种增强方法,主要包括:
输入增强主要包括查询转换和数据增强两个方面。查询转换旨在改善原始查询,使其更适合检索任务,如Query2doc、Tree of Clarifications等工作。数据增强则通过扩充训练数据来提升模型性能,如LESS、Make-An-Audio等研究。
检索器增强是RAG研究中最活跃的方向之一,包括递归检索、块优化、微调检索器、混合检索、重排序等多个子方向。例如,LlamaIndex提出了块优化的方法,BGE M3-Embedding探索了多语言、多功能、多粒度的文本嵌入。
生成器增强主要包括提示工程、解码调优和微调生成器三个方面。提示工程如Chain-of-Thought Prompting等工作,旨在通过优化提示来提升生成质量。解码调优和微调生成器则直接作用于模型本身,如InferFix、CodeGen等研究。
结果增强主要关注如何改进RAG的输出结果,如通过重写输出来提高生成内容的质量和准确性。代表性工作包括Automated Code Editing with Search-Generate-Modify 等。
RAG流程增强旨在从整体上优化RAG的工作流程,主要包括自适应检索和迭代式RAG两个方向。自适应检索如Self-RAG、Adaptive-RAG等工作,试图根据输入的复杂度动态调整检索策略。迭代式RAG如RepoCoder等,通过多轮检索和生成来逐步改善输出质量。
RAG技术已经在多个领域展现出了巨大的潜力,主要应用包括:
在文本领域,RAG主要应用于问答系统、对话系统、文本摘要和机器翻译等任务。例如,REALM和Atlas等工作在开放域问答任务上取得了显著进展。在对话系统方面,如Unims-rag等研究探索了多源检索增强的个性化对话系统。
在代码领域,RAG技术被广泛应用于代码生成、代码摘要、代码翻译和程序修复等任务。如ReACC提出了一个基于检索的代码补全框架,InferFix则探索了基于LLM的端到端程序修复方法。
在多模态领域,RAG技术在图像生成、视频生成、音频生成等方面都有应用。例如,Re-imagen提出了一种基于检索的文本到图像生成器,Animate-A-Story则探索了基于检索增强的视频生成方法用于讲故事。
尽管RAG技术已经取得了显著进展,但仍然存在一些挑战和机遇:
随着研究的深入和技术的发展,我们可以期待RAG在提升AI系统的知识获取、推理能力和生成质量方面发挥更大的作用,为各行各业带来更多创新应用。
检索增强 生成(RAG)技术作为一种有效提升AI生成内容质量的方法,正在快速发展并广泛应用于多个领域。通过将外部知识与大型语言模型相结合,RAG不仅提高了模型的准确性和可靠性,还扩展了AI系统的应用范围。随着研究的深入和技术的进步,我们有理由相信RAG将在未来的AI发展中扮演越来越重要的角色,为创造更智能、更可靠的AI系统做出重要贡献。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号