在当今快速发展的人工智能和大数据时代,如何高效地扩展计算密集型工作负载已成为一个关键挑战。Ray作为一个开源的统一计算框架应运而生,它为AI和Python应用提供了强大的扩展能力,使得从单机到大规模集群的过渡变得前所未有的简单。
Ray的设计理念是"简单易用,灵活强大"。它提供了一套直观的API,使得开发人员可以轻松地将现有的Python代码转换为分布式应用。同时,Ray的核心运行时系统经过精心优化,能够高效地管理分布式计算资源,实现近乎线性的扩展。
以下是Ray的一些核心优势:
统一框架: Ray为各种AI和机器学习工作负载提供了一个统一的计算框架,包括深度学习、强化学习、超参数调优等。
简单易用: Ray的API设计简洁明了,使得开发人员可以用最少的代码修改实现分布式计算。
灵活可扩展: Ray可以无缝地从单机扩展到数千台机器的集群,而无需更改代码。
高性能: Ray的核心运行时经过优化,能够高效地管理分布式资源和任务调度。
丰富的生态系统: Ray提供了多个专门的库,如RLlib(强化学习)、Tune(超参数调优)和Serve(模型服务),以满足不同的AI工作负载需求。
Ray框架由以下几个核心组件构成:
Ray Core: 提供了基础的分布式计算原语,如远程函数调用、actor和任务并行等。
Ray Data: 用于大规模数据处理和ETL任务的 库。
Ray Train: 简化分布式机器学习训练的库。
Ray Tune: 用于大规模超参数调优和模型选择的库。
Ray Serve: 用于构建可扩展的机器学习模型服务的库。
Ray RLlib: 用于强化学习的高度可扩展库。
这些组件共同构成了一个完整的AI和机器学习工作流程生态系统,使得开发人员可以在一个统一的框架内完成从数据处理到模型训练、调优和部署的全流程工作。
Ray已经在众多知名科技公司和研究机构中得到广泛应用。以下是一些典型的案例:
OpenAI: OpenAI使用Ray来训练其最大的模型,包括ChatGPT。Ray的分布式计算能力使OpenAI能够更快地迭代和扩展其模型。
Uber: Uber选择Ray作为其机器学习和深度学习平台的统一计算后端,显著提高了性能和容错能力。
AWS: Amazon Web Services利用Ray改善了大规模工作负载的可扩展性、延迟和成本效率,在某些情况下将可扩展性提高了一个数量级。
Ant Group: 蚂蚁集团在24万个核心上部署了Ray Serve用于模型服务,在"双11"购物节期间实现了每秒137万次的峰值吞吐量。
Cohere: Cohere使用Ray简化了其大语言模型(LLM)管道的分布式编程,使其能够跨数千个TPU管理复杂的工作负载。
这些案例充分展示了Ray在处理各种复杂AI工作负载时的强大能力和灵活性。
随着AI和机器学习技术的不断进步,对高效分布式计算框架的需求只会越来 越大。Ray作为一个开源项目,正在持续evolve以满足这些需求。以下是Ray未来发展的几个关键方向:
进一步提升性能和可扩展性: Ray团队正在不断优化其核心运行时,以支持更大规模的集群和更复杂的工作负载。
增强与云平台的集成: 为了简化在各种云环境中的部署和管理,Ray正在加强与主流云平台的集成。
扩展生态系统: Ray正在与更多的AI和机器学习库进行集成,以提供更全面的解决方案。
改善开发者体验: 通过提供更好的调试工具、监控功能和文档,Ray致力于进一步提升开发者的使用体验。
支持新兴AI技术: 随着诸如大规模语言模型等新技术的出现,Ray正在积极适应这些新场景的需求。
Ray作为一个强大而灵活的统一计算框架,正在revolutionize AI和Python应用的扩展方式。它不仅简化了分布式计算的复杂性,还为开发人员提供了一套完整的工具和库,以应对各种AI和机器学习挑战。随着AI技术的不断发展,Ray无疑将在未来的计算密集型应用中扮演越来越重要的角色。
无论您是在构建下一代AI应用,还是需要扩展现有的Python工作负载,Ray都提供了一个理想的解决方案。通过其简单易用的API和强大的分布式计算能力,Ray正在帮助开发者和组织更快、更高效地实现他们的AI愿景。
要开始使用Ray,您可以访问Ray官方网站或GitHub仓库获取更多信息和资源。加入Ray的开源社区,您将有机会与来自世界各地的开发者和研究人员交流,共同推动分布式计算和AI技术的发展。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还 包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数 据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号