RSN: 精细局部表征学习助力多人姿态估计

RayRay
RSN姿态估计COCO数据集关键点检测计算机视觉Github开源项目

RSN: 精细局部表征学习助力多人姿态估计

多人姿态估计是计算机视觉领域一个具有挑战性的任务,其目标是准确定位图像中多个人体的关键点位置。近年来,随着深度学习技术的发展,姿态估计的性能得到了显著提升。然而,如何在复杂场景下获得精确的关键点定位仍然面临诸多挑战。为了解决这一问题,来自中国科学院自动化研究所和旷视科技的研究人员提出了一种新颖的方法 - Residual Steps Network (RSN),该方法在COCO 2019关键点挑战赛中荣获冠军,并在多个公开数据集上刷新了最佳纪录。

RSN的核心思想

RSN的核心思想是通过聚合同一空间尺度的特征(称为层内特征)来获得精细的局部表征。与传统方法主要关注跨尺度特征融合不同,RSN更加注重挖掘同一尺度内的丰富信息。这种设计使得网络能够保留更多的低层空间细节,从而实现更加精确的关键点定位。

具体来说,RSN引入了一种称为"残差步骤"的结构。每个残差步骤由多个并行的卷积分支组成,这些分支具有相同的空间分辨率但不同的感受野。通过这种方式,网络可以在同一尺度下捕捉到多尺度的上下文信息。多个残差步骤串联形成一个残差步骤块,多个残差步骤块进一步组成完整的RSN主干网络。

RSN Pipeline

姿态细化机制

除了精细的局部特征表征,RSN还引入了一个高效的注意力机制 - 姿态细化机器(Pose Refine Machine, PRM)来进一步优化关键点位置。PRM采用了一种自适应的方式来聚合多尺度特征,它首先生成一个粗略的热图预测,然后基于该热图有选择地从多个尺度提取相关特征并进行融合,最终输出细化后的关键点预测结果。这种自适应的特征聚合方式使得网络能够更加关注那些困难的或者容易出错的区域,从而提高整体的定位精度。

Pose Refine Machine

卓越的性能表现

RSN在多个公开数据集上都取得了优异的表现:

  1. COCO数据集: 在COCO test-dev上,单模型RSN-50 (256x192输入)就达到了72.5 AP。通过使用更大的模型(4×RSN-50)和更高的输入分辨率(384x288),性能可以进一步提升到78.6 AP。使用模型集成后,最终在COCO test-dev上达到了79.2 AP,在test-challenge上达到了77.1 AP,均为当时的最佳成绩。

  2. MPII数据集: 在MPII测试集上,RSN同样表现出色,4×RSN-50模型达到了93.0的平均准确率,超越了之前的最佳结果。

这些卓越的性能充分证明了RSN在多人姿态估计任务上的有效性。

RSN的应用示例

为了直观展示RSN的效果,研究人员提供了一些在COCO和MPII验证集上的预测结果可视化:

COCO Results

MPII Results

从这些示例中可以看出,RSN能够准确地定位各种复杂场景下的人体关键点,包括遮挡、密集人群、不同尺度的人体等challenging情况。

开源与影响

为了推动多人姿态估计领域的发展,研究人员将RSN的完整实现开源在了GitHub上。这个开源项目不仅包含了模型的训练和测试代码,还提供了预训练模型和详细的使用说明。值得一提的是,RSN已经被集成到了流行的姿态估计框架MMPose中,这进一步扩大了其影响力和可用性。

自发布以来,RSN项目在GitHub上获得了超过480颗星,显示出社区对这项工作的认可和关注。许多研究者和开发者基于RSN进行了进一步的改进和应用,推动了整个领域的进步。

未来展望

尽管RSN取得了显著的成果,但多人姿态估计领域仍然存在诸多挑战和改进空间:

  1. 实时性: 如何在保持高精度的同时提高模型的推理速度,使其能够应用于实时系统中。

  2. 鲁棒性: 进一步提高模型在极端光照、严重遮挡等复杂场景下的表现。

  3. 轻量化: 设计更加高效的网络结构,减少计算量和参数量,使模型能够在移动设备等资源受限的平台上运行。

  4. 跨域泛化: 提高模型在不同数据集和场景之间的泛化能力。

  5. 3D姿态估计: 将RSN的思想扩展到3D姿态估计任务中。

RSN为解决这些挑战提供了一个良好的起点。未来的研究可以基于RSN的核心思想,结合最新的深度学习技术(如神经架构搜索、知识蒸馏等),开发出更加强大和高效的姿态估计算法。

结语

Residual Steps Network (RSN)通过创新的特征聚合方式和姿态细化机制,在多人姿态估计任务上取得了突破性的进展。它不仅在学术界引起了广泛关注,也为实际应用提供了有力支持。随着计算机视觉技术的不断发展和RSN等先进算法的推动,我们有理由相信,更加精确、高效和鲁棒的人体姿态估计系统将在不久的将来成为现实,为人机交互、动作识别、虚拟现实等众多领域带来革命性的变革。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多