在表格数据深度学习领域,如何有效处理连续数值特征一直是一个重要的研究课题。近日,Yandex Research团队提出了一种创新的方法 - 将原始的标量连续特征转换为向量嵌入,然后再输入到神经网络的主干模型中。这种方法在多个表格数据集上取得了显著的性能提升,为该领域带来了新的研究方向。
传统的表格深度学习模型通常直接使用原始的标量数值特征作为输入。rtdl-num-embeddings项目的核心思想是在将特征输入到主干网络(如MLP、Transformer等)之前,先将它们转换为向量表示。
这种做法带来了几个重要优势:
显著提升模型性能:实验表明,使用嵌入的模型在多个表格数据集上的表现大幅超越了传统模型。
适用于各种主干网络:嵌入方法可以与MLP、Transformer等各种主流网络结构结合使用。
简单而高效:使用嵌入的简单MLP模型在性能上可以与复杂的Transformer模型相媲美,同时计算效率更高。
实用性强:尽管引入嵌入会增加参数量,但在大多数实际应用场景中,这种开销是完全可以接受的。
上图直观地展示了传统MLP和使用数值特征嵌入的MLP之间的区别。左图是vanilla MLP直接使用两个连续特征作为输入,右图则是先将连续特征转换为向量嵌入再输入MLP。
研究人员认为,嵌入的有效性可能来源于多个方面:
处理不规则分布:实际数据中的连续特征及其与标签的联合分布往往是不规则的,这对传统模型的优化带来了挑战。嵌入可以帮助模型更 好地处理这种不规则性。
改善优化性质:将标量转换为向量可能改变了损失函数的景观,使得优化过程更加平滑和高效。
增强表达能力:向量表示相比标量可以携带更丰富的信息,潜在地提升了模型的表达能力。
适应高频函数:参考Fourier Features相关研究,嵌入可能帮助网络更好地学习高频函数。
然而,目前还不能完全确定嵌入有效性的全部原因,这仍是一个值得深入研究的方向。
研究团队在11个不同的表格数据集上进行了广泛的实验,包括Adult、California Housing、Churn等知名数据集。以下是部分实验结果:
数据集 测试分数
Adult 0.854
California Housing -0.495
Churn 0.856
Covtype 0.964
FB Comments -5.686
Gesture 0.632
Higgs-small 0.720
House -32039.399
Microsoft -0.747
Otto 0.818
Santander 0.912
这些结果清楚地表明,使用数值特征嵌入的模型在各种不同类型和规模的数据集上都取得了优异的表现。特别值得注意的是,即使是简单的MLP模型配合嵌入,也能在多个数据集上达到与复杂Transformer模型相当甚至更好的性能。
为了方便研究人员和实践者使用这项技术,rtdl-num-embeddings项目提供了一个Python包。该包封装了论文中提出的各种嵌入方法和主干网络,使用户可以轻松地在自己的项目中应用数值特征嵌入技术。
使用该包,您可以轻松地:
尽管rtdl-num-embeddings项目已经取得了显著的成果,但仍有许多值得探索的方向:
理论解释:深入研究嵌入有效性的理论基础,可能涉及优化理论、表征学习等多个领域。
新型嵌入方法:设计更先进的嵌入算法,进一步提升模型性能。
大规模应用:研究如何在超大规模数据集和特征数量巨大的场景下高效应用嵌入技术。
与其他技术结合:探索数值特征嵌入与其他先进技术(如自注意力机制、图神经网络等)的结合。
可解释性:研究如何解释和可视化数值特征嵌入,以增强模型的可解释性。
rtdl-num-embeddings项目为表格深度学习领域带来了一个简单而强大的新工具。通过将连续数值特征转换为向量嵌入,研究人员不仅显著提升了模型性能,还为解决表格数据中的一些长期挑战提供了新的思路。随着更多研究者加入探索,我们有理由期待这一领域在未来会有更多突破性进展。
对于有志于在表格深度学习领域进行研究或应用的读者,rtdl-num-embeddings无疑是一个值得关注和尝试的项目。无论您是学术研究者还是工业界实践者,这项技术都可能为您的工作带来新的灵感和工具。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。
HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。
一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。
WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。
基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。
xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。
一个用于 OCR 的项目,支 持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。
olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。
飞书多维表格 ×DeepSeek R1 满血版
飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业 生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号