在机器学习和人工智能领域,表格数据一直是一个重要但具有挑战性的研究方向。与图像、文本等非结构化数据相比,表格数据的处理和建模往往更加复杂。为了推动这一领域的发展,Yandex Research团队创建了RTDL (Research on Tabular Deep Learning)项目,旨在汇集和推广表格数据深度学习的最新研究成果。
RTDL项目是一个开源的研究平台,主要包含两大部分:
该项目在GitHub上已获得了865颗星和100次fork,显示出研究社区对其的高度关注。
RTDL项目涵盖了表格数据深度学习的多个重要方向,以下是其中的一些代表性工作:
TabReD: 野外表格机器学习基准 (2024) 这项研究提出了一个新的基准测试,用于评估表格机器学习模型在实际应用场景中的性能。
TabR: 表格深度学习遇上最近邻 (2023) 该论文探索了将深度学习与最近邻算法相结合的新方法,以提高表格数据的处理效果。
TabDDPM: 使用扩散模型建模表格数据 (2022) 研究者们将扩散模型应用于表格数据建模,开拓了新的研究方向。
重新审视表格深度学习的预训练目标 (2022) 这项工作深入研究了预训练在表格深度学习中的作用,为模型设计提供了新的见解。
表格深度学习中数值特征的嵌入 (2022) 论文探讨了如何有效地将数值特征嵌入到深度学习模型中,这是表格数据处理中的一个关键问题。
重新审视表格数据的深度学习模型 (2021) 这篇论文对现有的表格数据深度学习模型进行了全面的评估和比较,为后续研究奠定了基础。
用于表格数据深度学习的神经模糊决策集成 (2019) 该研究提出了一种新的模型结构,将决策树的可解释性与神经网络的强大表达能力相结合。
RTDL项目不仅提供了论文,还开发了多个相关的Python包,使得研究成果能够更容易地被应用到实际项目中。主要的技术特点包括:
模块化设计: 不同的研究成果被封装成独立的包,如rtdl_num_embeddings
和rtdl_revisiting_models
,便于用户按需使用。
兼容性: 这些包设计时考虑了与常用机器学习库(如scikit-learn)的兼容性,方便集成到现有的工作流程中。
持续更新: 项目团队持续发布新的研究成果和代码更新,保持了技术的前沿性。
开源协作: 采用Apache-2.0许可证,鼓励社区参与和贡献。
RTDL项目的研究成果在多个领域都有潜在的应用价值:
金融科技: 可用于信用评分、风险评估等任务,提高模型的准确性和可解释性。
医疗健康: 有助于处理电子健康记录数据,进行疾病预测和个性化医疗。
零售和电商: 能够优化产品推荐系统和客户行为分析。
工业4.0: 可应用于设备预测性维护和生产优化。
公共服务: 有助于改进政府决策系统和公共资源分配。
对于有兴趣参与RTDL项目或使用其研究成果的人,可以通过以下方式参与:
访问RTDL的GitHub仓库,了解最新的研究进展。
安装并使用RTDL提供的Python包:
pip install rtdl_num_embeddings pip install rtdl_revisiting_models pip install "scikit-learn>=1.0,<2"
关注项目作者和贡献者的GitHub账号,如Yury Gorishniy和Yizhu Wen。
参与项目讨论,提出问题或贡献代码。
在自己的研究或项目中引用 和使用RTDL的成果,并分享使用体验。
RTDL项目代表了表格数据深度学习研究的最新进展,为这一重要但具有挑战性的领域提供了宝贵的资源。通过开源共享和持续创新,RTDL正在推动整个行业向前发展。无论你是研究人员、数据科学家还是机器学习工程师,RTDL都值得你深入了解和关注。随着项目的不断发展,我们可以期待看到更多突破性的研究成果,以及这些成果在实际应用中产生的深远影响。
在人工智能和机器学习快速发展的今天,像RTDL这样的开源项目正在发挥着越来越重要的作用。它不仅推动了学术研究的进步,也为industry应用提供了可靠的技术支持。让我们共同期待RTDL项目在未来带来更多令人兴奋的突破和创新!
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描 述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自 动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档 ,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号