Set-of-Mark (SoM): 提升大型语言模型视觉能力的创新方法

RayRay
GPT-4V视觉提示Set-of-Mark图像分割视觉推理Github开源项目

Set-of-Mark (SoM):视觉AI的革命性突破

在人工智能快速发展的今天,视觉理解能力一直是大型语言模型(LLM)面临的重要挑战之一。为了解决这一问题,微软研究院的科研人员开发了一种名为Set-of-Mark (SoM)的创新技术,通过在图像上叠加一系列空间和可说话的标记,显著提升了GPT-4V等大型语言模型的视觉理解和分析能力。本文将深入探讨SoM的工作原理、应用场景以及其对视觉AI领域的重要影响。

SoM的核心理念与工作原理

Set-of-Mark (SoM)的核心idea非常简单而直观 - 在输入图像上叠加一系列标记,为语言模型提供额外的视觉参考点。这些标记可以是数字、字母或其他简单符号,分布在图像的不同区域。通过这种方式,SoM为语言模型创建了一个"视觉锚点系统",使其能够更精确地定位和描述图像中的特定区域或对象。

SoM方法示意图

SoM的工作流程大致可以分为以下几个步骤:

  1. 图像预处理:使用先进的计算机视觉模型(如Mask DINO、OpenSeeD等)对输入图像进行分析,生成对象检测和分割结果。

  2. 标记生成:基于预处理结果,在图像上生成一系列标记,这些标记可能包括数字、字母或其他简单符号。

  3. 标记叠加:将生成的标记叠加到原始图像上,创建一个带有视觉参考点的增强版图像。

  4. 模型输入:将增强后的图像输入到GPT-4V等大型语言模型中进行分析和理解。

  5. 交互式问答:用户可以通过引用标记来询问关于图像特定部分的问题,模型能够基于这些标记提供更精确的回答。

通过这种方法,SoM成功地为语言模型搭建了一座连接视觉和语言的桥梁,大大提高了模型的视觉理解能力。

SoM的应用场景与优势

SoM技术的应用范围十分广泛,几乎涵盖了所有需要精确视觉理解的领域。以下是一些典型的应用场景:

  1. 医疗影像分析:在医疗CT或MRI图像上使用SoM,可以帮助AI更准确地定位和描述特定的病变区域,为医生提供更精确的辅助诊断。

  2. 自动驾驶:在道路场景图像中应用SoM,可以提高AI对交通标志、行人和其他车辆的识别和定位能力,提升自动驾驶系统的安全性。

  3. 工业质检:在产品图像上使用SoM,可以帮助AI更精确地识别和定位产品缺陷,提高质量控制的效率和准确性。

  4. 遥感图像分析:在卫星或航拍图像上应用SoM,可以提升AI对地理特征、植被覆盖和城市规划的分析能力。

  5. 教育与培训:在教学材料或培训文档中使用SoM增强的图像,可以提供更直观和交互式的学习体验。

SoM相比传统视觉AI方法具有以下显著优势:

  • 精确定位:通过标记系统,SoM能够帮助模型更准确地定位和描述图像中的特定区域或对象。
  • 交互性强:用户可以通过引用标记来询问关于图像特定部分的问题,实现更自然的人机交互。
  • 通用性好:SoM可以应用于各种类型的图像和视觉任务,具有广泛的适用性。
  • 易于实施:SoM不需要对现有语言模型进行大规模重训练,只需在输入端进行简单的图像增强即可。

SoM的技术实现与工具箱

为了使研究人员和开发者能够方便地使用SoM技术,微软研究院开发了一个名为"SoM Toolbox"的工具箱。这个工具箱提供了一系列功能,帮助用户轻松地在图像上生成和管理标记。

SoM Toolbox界面

SoM Toolbox的主要功能包括:

  1. 自动分割:使用先进的计算机视觉模型自动对图像进行分割,识别出不同的对象和区域。

  2. 交互式标记:允许用户手动调整和优化自动生成的标记,以更好地满足特定需求。

  3. 多种标记类型:支持数字、字母、形状等多种标记类型,用户可以根据需要选择最适合的标记方式。

  4. 标记密度控制:用户可以调整标记的密度,在精确度和可读性之间找到平衡。

  5. 导出功能:将带有SoM标记的图像导出为各种格式,方便在不同平台和应用中使用。

通过这个工具箱,研究人员和开发者可以快速生成适用于SoM的增强图像,大大简化了实验和应用开发的流程。

SoM的研究成果与未来展望

SoM技术的效果已经通过大量实验得到了验证。研究人员对比了使用SoM和不使用SoM的GPT-4V在各种视觉任务上的表现,结果显示SoM显著提升了模型的性能。

SoM性能对比

在未来,SoM技术还有很大的发展空间:

  1. 标记优化:研究更高效和更不显眼的标记方法,进一步提升用户体验。

  2. 多模态融合:探索将SoM与其他模态(如音频、文本)结合的可能性,实现更全面的多模态理解。

  3. 实时应用:优化SoM的处理速度,使其能够在实时视频流等场景中应用。

  4. 自适应标记:开发能够根据图像内容和任务需求自动调整标记策略的智能系统。

  5. 隐私保护:研究如何在保护隐私的前提下应用SoM技术,特别是在医疗等敏感领域。

结语

Set-of-Mark (SoM)技术为提升大型语言模型的视觉理解能力开辟了一条新的道路。通过简单而巧妙的标记系统,SoM成功地增强了模型的视觉定位和分析能力,为各种视觉AI应用带来了新的可能性。随着技术的不断发展和完善,我们有理由相信SoM将在未来的AI视觉理解领域发挥越来越重要的作用,推动视觉AI技术向着更精确、更智能的方向不断前进。

对于研究人员和开发者来说,现在正是探索和利用SoM技术的最佳时机。无论是在学术研究还是实际应用中,SoM都提供了一个强大而灵活的工具,帮助我们更好地理解和利用视觉信息。让我们期待SoM技术在未来带来更多令人兴奋的突破和创新! 🚀🔬🖼️


相关链接:

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多