StreamDiffusion:实时互动生成图像的管道级解决方案

Ray

项目简介

StreamDiffusion 是一种新型实时扩散管道,用于交互式图像生成,能够改善直播流和类似场景的性能。它用更快的批处理过程替代了传统的顺序去噪,引入了并行输入输出队列以实现更平稳的操作。该管道还采用了一种新颖的残差无分类引导方法,减少了去噪步骤并提高了速度。此外,它还集成了一种随机相似性滤波器,以提高功率效率。

总体来说,StreamDiffusion 实现了高达 1.5 倍的处理速度加快,以及在采用 RCFG(残差无分类引导)情况下高达 2.05 倍的速度提升,在 RTX4090 GPU 上可达到 91.07fps。它还显著降低了能源消耗,使其成为实时图像生成的更高效解决方案。

项目简介图片

主要特征

  1. 流批处理 通过高效的批处理操作简化数据处理。

  2. 无残差分类器指导 改进的引导机制可最大限度地减少计算冗余。

  3. 随机相似性过滤器 通过先进的过滤技术提高GPU利用效率。

  4. IO队列 有效管理输入和输出操作,以实现更顺畅的执行。

  5. KV-Cache 的预计算 优化缓存策略以加速处理。

  6. 模型加速工具 利用各种工具进行模型优化和性能提升。

StreamDiffusion 管道

流批处理的概念。在这个方法中,不会等待单个图像完全去噪后再处理下一个输入图像,而是在每个去噪步骤后接受下一个输入图像。这样就创建了一个去噪批次,其中每个图像的去噪步骤是交错的。通过将这些交错的去噪步骤串联成一个批次,我们可以利用 U-Net 进行批处理,有效地处理连续输入。在时间步长 t 编码的输入图像在时间步长 t + n 生成并解码,其中 n 是去噪步骤的数量。

StreamDiffusion 管道图片

批量处理去噪步骤

虚拟残差噪声向量:橙色向量表示从 PF ODE 轨迹出发并指向原始输入潜变量 Xo 的虚拟残差噪声。

传统扩散模型依赖于顺序去噪步骤,每增加一步,处理时间线性增加,特别是在 U-Net 框架中。然而,更高保真度的图像需要更多的去噪步骤,导致更高的延迟。

Stream Batch 通过将顺序去噪重构为批处理过程来解决这个问题。每个批次对应一定数量的去噪步骤,允许批次中的每个元素在单次 U-Net 传递中完成去噪序列中的一步。这种方法以更流畅的方式将特定时间步长的输入图像转换为未来时间步长的图像到图像结果。

这种方法显著减少了对多次 U-Net 推理的需求,并避免了处理时间随步骤数线性增加的问题。关键的权衡从处理时间与生成质量转变为 VRAM 容量与生成质量。有足够的 VRAM,可以在单个 U-Net 处理周期内生成高质量图像,有效缓解了由增加去噪步骤引起的延迟问题。

批量处理去噪步骤图片

残差无分类引导(RCFG)

传统的无分类引导(CFG)通过调整条件项的影响来改善图像生成,但它需要对每次推理进行多次计算成本高昂的 U-Net 模型传递。RCFG 通过引入虚拟残差噪声的概念来解决这个问题,该噪声用于从生成过程中的给定点预测原始输入图像的潜在表示。这种方法允许有效的图像生成,根据引导比例偏离原始图像,无需额外的 U-Net 计算。这个过程被称为自负面 RCFG。

此外,RCFG 还可以用于偏离任何负面条件,只需在第一步去噪时计算一次负面条件的残差噪声,并在整个过程中使用这种噪声(一次性负面 RCFG)。这种方法显著减少了计算负担,与传统 CFG 所需的 2n 次计算相比,自负面和一次性负面 RCFG 分别只需要 n 或 n+1 次 U-Net 计算。这使 RCFG 在保持或提升生成图像的质量的同时,更加高效。

输入输出队列

输入输出队列图片

输入输出队列:将输入图像转换为管道可以管理的张量数据格式的过程,反之亦然,将解码的张量转换回输出图像需要额外的处理时间,并非微不足道。为了避免将这些图像处理时间添加到瓶颈过程,即神经网络推理过程中,我们将图像预处理和后处理分离到不同的线程中,允许并行处理。此外,通过使用输入张量队列,我们可以应对由于设备故障或通信错误而导致的输入图像暂时中断,从而实现平稳流媒体。

高速图像生成系统通过将不需要神经网络处理的任务(如图像的预处理和后处理)转移到主管道之外并行处理来进行优化。输入图像经过缩放、张量转换和标准化等操作。为了协调人类输入和模型吞吐量的不同处理速度,作者实现了一个输入输出队列系统。这些队列处理扩散模型的输入张量,然后通过 VAE 编码器进行图像生成。VAE 解码器的输出张量进入输出队列进行后处理和格式转换,然后发送到渲染客户端。这种策略提高了系统效率,加快了图像生成速度。

模型加速和微型自动编码器

模型加速和微型自动编码器图片

GPU 使用率对比(静态场景下)。(GPU:RTX3060,帧数:20)蓝线代表开启随机相似性滤波(SSF)时的 GPU 使用率,橘黄线表示未使用 SSF 时的 GPU 使用率,红线表示基于输入帧间余弦相似度计算的跳过概率。此外,图表顶部显示了与相同时间戳对应的输入图像。在这种情况下,输入图像中的角色仅在眨眼。因此,这项分析比较了静态场景下的 GPU 使用率。

U-Net 和 VAE 引擎是使用 TensorRT 构建的。为了进一步优化速度,作者使用了静态批次大小和固定输入尺寸,这优化了针对特定输入大小的计算图和内存分配,从而实现了更快的处理时间。然而,这种方法的灵活性较低,需要进行批次大小和输入大小的静态调整。

结论

通过在扩散模型的基础上引入 Stream Batch、RCFG 和 SSF 等技术,StreamDiffusion 管道实现了显著的性能提升。实验结果表明,与传统 CFG 相比,RCFG 使处理速度提高了 1.5 倍。StreamDiffusion 在处理相同图像数量时,在 RTX4090 上实现了 91.07fps 的速度,能源效率也得到了显著提升。尽管该管道需要更多的 VRAM,但它的整体性能提升和能效优化使其成为实时图像生成领域的创新解决方案。

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号