近年来,Transformer模型在自然语言处理领域取得了巨大成功,并迅速扩展到计算机视觉领域。作为一种能够捕捉长程依赖关系的强大架构,Transformer在医学影像分析中展现出了巨大的潜力。本文将全面回顾Transformer在医学影像分析各个任务中的应用进展。
与传统的卷积神经网络(CNN)相比,Transformer具有以下优势:
这些特性使得Transformer特别适合处理医学影像中的复杂结构和模式。
影像分割是医学影像分析中的核心任务之一。Transformer在这一领域展现出了强大的性能。
UNETR(UNet Transformers)是一种结合了U-Net结构和Transformer的创新架构。它利用Transformer编码器捕捉3D体积图像的全局特征,然后通过U-Net解码器进行精细分割。UNETR在多个3D医学影像分割基准上取得了state-of-the-art的性能。
TransUNet是另一种混合架构,它将CNN用于局部特征提取,Transformer用于建模长程依赖。这种设计充分利用了CNN的局部感受野和Transformer的全局建模能力,在2D医学影像分割任务中表现优异。
Transformer在医学影像分类任务中也展现出了强大的性能,特别是在处理高分辨率图像时。
ViT通过将图像分割成一系列patch并进行序列化处理,实现了端到端的图像分类。在多个医学影像分类数据集上,ViT都取得了优于传统CNN的表现。例如,在胸部X光片分类任务中,ViT在准确率和AUC指标上都优于ResNet等经典CNN模型。
考虑到医疗场景中的计算资源限制,研究人员也提出了多种轻量级Transformer模型,如Swin Transformer和Efficient-ViT等。这些模型在保持高性能的同时,大大减少了参数量和计算复杂度。
在病灶检测和器官定位等任务中,Transformer也展现出了独特的优势。
DETR(DEtection TRansformer)通过将目标检测问题转化为集合预测问题,实现了端到端的目标检测。在医学影像检测任务中,DETR及其变体展现出了优秀的性能,特别是在处理小目标和密集目标时。
针对3D医学影像中的器官定位任务,研究人员提出了基于Transformer的3D定位模型。这些模型能够有效捕捉3D空间中的长程依赖关系,提高定位精度。
Transformer在医学影像重建和合成任务中也找到了广泛应用。
在低剂量CT重建任务中,Transformer被用来学习高质量CT图像和低剂量CT图像之间的映射关系。研究表明,基于Transformer的重建方法能够在保持图像细节的同时有效抑制噪声。
Transformer的多模态处理能力使其在跨模态医学影像合成任务中表现出色。例如,利用Transformer可以实现从MRI图像合成CT图像,这在放射治疗计划等场景中具有重要应用价值。
尽管Transformer在医学影像分析中取得了显著进展,但仍面临一些挑战:
未来的研究方向可能包括:
Transformer在医学影像分析领域展现出了巨大的潜力,为提高诊断准确性和辅助临床决策提供了新的可能。随着技术的不断进步,我们有理由相信Transformer将在未来的医学影像分析中发挥越来越重要的作用。这一领域的发展不仅推动了人工智能技术的进步,也为提升医疗质量和患者福祉做出了重要贡献。
通过这篇综述,我们希望能为研究人员和临床医生提供一个全面的视角,了解Transformer在医学影像分析中的最新进展,并激发更多创新性的研究和应用。未来,随着更多的数据积累和算法改进,我们期待看到Transformer在医学影像分析领域带来更多突破性的成果。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目 。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入 快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项 目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号