UMI on Legs: 让操作策略在四足机器人上实现移动化

RayRay
UMI on Legs机器人操作四足机器人全身控制器视觉运动策略Github开源项目

UMI on Legs: 让操作策略在四足机器人上实现移动化

在机器人领域,让四足机器人具备灵活的操作技能一直是一个充满挑战的研究课题。近日,斯坦福大学和哥伦比亚大学的研究团队提出了一个名为"UMI on Legs"的创新框架,为解决这一难题提供了新的思路。这个框架巧妙地结合了真实世界的人类示范数据和仿真训练的全身控制器,为四足机器人提供了一种可扩展的操作技能学习方法。

创新框架的核心理念

UMI on Legs 的核心理念是将操作策略与全身控制分离,同时建立一个有效的接口来连接这两个部分。具体来说,该框架包含以下几个关键组成部分:

  1. UMI手持夹持器: 这是一个带有GoPro相机的手持设备,用于收集真实世界中的人类操作示范数据。研究人员可以使用UMI在各种环境中收集丰富的操作数据,而无需实际的机器人。

  2. 视觉-运动策略: 基于UMI收集的数据训练得到的策略,能够从图像输入生成夹持器的运动轨迹。

  3. 操作中心的全身控制器: 在仿真环境中训练的控制器,能够控制四足机器人的全身运动,以精确跟踪给定的末端执行器轨迹。

  4. 接口: 使用末端执行器在任务坐标系中的轨迹作为视觉-运动策略和全身控制器之间的接口。

这种设计使得现有的视觉-运动策略可以轻松地移植到四足机器人上,实现操作策略的移动化。

技术细节与创新点

真实世界数据收集

UMI (Universal Manipulation Interface) 是该框架中的一个关键组件。它是一个带有GoPro相机的手持夹持器,允许研究人员在不使用实际机器人的情况下收集真实世界的操作示范数据。这种方法有几个显著优势:

  1. 成本效益高: 无需昂贵的机器人即可收集大量数据。
  2. 灵活性强: 可以在各种环境中轻松收集数据。
  3. 安全性高: 避免了使用真实机器人可能带来的安全风险。

仿真环境中的全身控制器训练

研究团队使用IsaacGym仿真器来训练四足机器人的全身控制器。这个控制器具有以下特点:

  1. 操作中心设计: 控制器专注于跟踪世界坐标系中的末端执行器轨迹,而不是像之前的工作那样在机体坐标系中跟踪。这使得机器人能够更好地应对外部干扰,保持操作的稳定性。

  2. 轨迹预测: 控制器能够预测未来的末端执行器轨迹,从而实现更精确的运动控制。例如,在投掷任务中,机器人可以提前调整姿态以获得更好的投掷效果。

  3. 鲁棒性: 通过在训练中引入质量、重心和关节参数的随机化,控制器具有较强的鲁棒性,能够适应不同的环境和任务。

UMI on Legs 演示

实验验证与应用

研究团队在多个任务上对UMI on Legs进行了测试,包括抓取、非抓取操作和动态操作任务。实验结果显示,该框架在所有任务中都达到了超过70%的成功率。特别值得一提的是,研究人员成功地将一个原本为固定基座机械臂设计的操作策略,零样本迁移到了四足机器人上。

一些令人印象深刻的演示包括:

  1. 四足机器人精确投掷网球
  2. 推动重物(如壶铃)
  3. 在行走时重新排列桌面上的物品

这些任务展示了UMI on Legs框架的versatility和实用性。

硬件设计与系统集成

为了将UMI on Legs付诸实践,研究团队设计了一个名为"Espresso"的四足机器人平台。这个平台具有以下特点:

  1. 机械臂: 配备了一个名为"Oat Milk"的机械臂,末端安装了3D打印的夹持器。
  2. 视觉系统: 在头部安装了GoPro相机,用于提供视觉输入。
  3. 定位系统: 在机器人的"臀部"安装了iPhone,运行自定义iOS应用程序,用于提供机器人的姿态信息,实现世界坐标系下的稳定控制。

这种硬件配置使得Espresso能够灵活地执行各种操作任务,同时保持移动能力。

未来展望与潜在应用

UMI on Legs框架为四足机器人的操作能力开辟了新的可能性。一些潜在的应用领域包括:

  1. 搜救任务: 四足机器人可以在复杂地形中移动,同时执行精细的操作任务。
  2. 工业检修: 在狭窄或危险的环境中进行检查和维修工作。
  3. 家庭服务: 未来的家用机器人可能会采用类似的设计,既能在家中自由移动,又能完成各种日常任务。

然而,研究团队也指出了当前框架的一些局限性,如操作策略与全身控制器之间的单向通信可能导致某些不可达目标的问题。未来的工作可能会focus on改进这一接口,实现双向通信和多个末端执行器的协调控制。

结论

UMI on Legs 为四足机器人的操作能力提供了一个创新的解决方案。通过结合真实世界的数据收集、仿真训练和巧妙的系统设计,这个框架为机器人研究社区提供了一个可扩展、灵活的平台。随着进一步的发展和完善,我们可以期待看到更多令人惊叹的四足机器人应用在不久的将来成为现实。

对于有兴趣深入了解或尝试复现这项工作的研究者和开发者,UMI on Legs 的源代码和详细文档已在GitHub上开源。这为推动四足机器人技术的进步和创新应用提供了宝贵的资源。

Espresso and Latte

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多