近年来,神经辐射场(Neural Radiance Fields, NeRF)技术在三维场景重建和新视角合成领域取得了突破性进展。然而,传统NeRF方法在处理大规模无界场景时面临诸多挑战。为此,来自上海交通大学的研究团队开发了UnboundedNeRFPytorch项目,致力于突破NeRF的应用边界,实现高效的大规模场景重建与渲染。
UnboundedNeRFPytorch是一个基于PyTorch的开源项目,旨在为无界NeRF提供简单高效的实现。该项目的主要特点包括:
研究团队表示,UnboundedNeRFPytorch仍处于持续开发中的研究项目阶段。他们希望通过开源的方式,为计算机视觉和图形学社区提供一个研究无界NeRF的基准平台。
在多个公开数据集上,UnboundedNeRFPytorch展现出了优异的性能。以下是部分实验结果:
Unbounded Tanks & Temples数据集:
Mip-NeRF-360基准:
可以看到,UnboundedNeRFPytorch在这些具有挑战性的数据集上均取得了最佳或接近最佳的PSNR指标,展现出了其在 无界场景重建方面的优势。
UnboundedNeRFPytorch的安装过程相对简单,主要包括以下步骤:
详细的安装说明可以在项目的GitHub页面上找到。安装完成后,用户可以通过运行python run_FourierGrid.py
命令来开始训练-测试-渲染的完整流程。项目提供了丰富的命令行参数,方便用户根据需求进行调整。
UnboundedNeRFPytorch目前支持以下三个主要的无界NeRF数据集:
项目提供了这些数据集的下载链接和预处理脚本,方便研究人员快速开始实验。值得一提的是,对于Waymo数据集,研究团队还提供了经过优化的版本,大大减小了数据规模并提高了加载效率。
除了支持公开数据集,UnboundedNeRFPytorch还提供了构建自定义无界NeRF场景的功能。用户只需按照指定格式放置图像数据,即可使用COLMAP进行场景重建,然后使用项目提供的训练脚本开始NeRF训练。这一功能极大地扩展了项目的应用范围,使研究人员能够在各种实际场景中应用和验证无界NeRF技术。
UnboundedNeRFPytorch的核心创新在于其对无界场景的高效表示和渲染方法。虽然项目文档中并未详细披露具体的技术细节,但从其性 能表现和代码结构来看,可能采用了以下几点关键技术:
高效的场景表示:可能使用了类似于哈希编码或多分辨率网格的数据结构,以高效地表示大规模场景。
自适应采样策略:针对无界场景的特点,设计了更加灵活的光线采样和体素采样策略。
优化的训练流程:通过精心设计的损失函数和优化策略,加快了模型的收敛速度。
GPU加速:充分利用CUDA编程,将计算密集型操作offload到GPU上执行。
这些技术的组合使得UnboundedNeRFPytorch能够在保持高质量重建效果的同时,显著提升训练和渲染的效率。
UnboundedNeRFPytorch项目仍在积极发展中。研究团队表示,未来将继续关注以下几个方向:
此外,项目团队还维护着一个"每周NeRF论文分类"列表,持续跟踪和总结NeRF领域的最新进展。这不仅有助于研究人员快速了解领域动态,也为项目的持续改进提供了宝贵的参考。
UnboundedNeRFPytorch项目为无界神经辐射场技术提供了一个简洁高效的开源实现。通过在多个具有挑战性的数据集上展现出色的性能,该项目证明了其在大规模场景重建与渲染方面的潜力。随着项目的持续发展和社区的积极贡献,UnboundedNeRFPytorch有望成为推动NeRF技术在更广阔应用场景中落地的重要工具。无论是对于研究人员还是实际应用开发者而言,这都是一个值得关注和尝试的优秀项目。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号